早教吧作业答案频道 -->数学-->
在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B
题目详情
在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,
(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.
(3)在(2)的条件下,若直线y=-2x-2分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.

(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.
(3)在(2)的条件下,若直线y=-2x-2分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.

▼优质解答
答案和解析
(1)如图1,∵AB与x轴平行,
根据抛物线的对称性有AE=BE=1,
∵∠AOB=90°,
∴OE=
AB=1,
∴A(-1,1)、B(1,1),
把x=1时,y=1代入y=ax2得:a=1,
∴抛物线的解析式y=x2,
A、B两点的横坐标的乘积为xA•xB=-1
(2)xA•xB=-1为常数,
如图2,过A作AM⊥x轴于M,BN⊥x轴于N,
∴∠AMO=∠BNO=90°,
∴∠MAO+∠AOM=∠AOM+∠BON=90°,
∴∠MAO=∠BON,
∴△AMO∽△BON,
∴
=
,
∴OM•ON=AM•BN,
设A(xA,yA),B(xB,yB),
∵A(xA,yA),B(xB,yB)在y=x2图象上,
∴,yA=xA2,yB=xB2,
∴-xA•xB=yA•yB=xA2•xB2,
∴xA•xB=-1为常数;
(3)设A(m,m2),B(n,n2),
如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.
∴
=
,即
=
,整理得:mn(mn+1)=0,
∵mn≠0,∴mn+1=0,即mn=-1.
设直线AB的解析式为y=kx+b,联立
,得:x2-kx-b=0.
∵m,n是方程的两个根,∴mn=-b.
∴b=1.
∵直线AB与y轴交于点D,则OD=1.
易知C(0,-2),OC=2,∴CD=OC+OD=3.
∵∠BPC=∠OCP,∴PD=CD=3.
设P(a,-2a-2),过点P作PG⊥y轴于点G,则PG=-a,GD=OG-OD=-2a-3.
在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,
即:(-a)2+(-2a-3)2=32,整理得:5a2+12a=0,
解得a=0(舍去)或a=-
,
当a=-
时,-2a-2=
,
∴P(-
,
).
(1)如图1,∵AB与x轴平行,根据抛物线的对称性有AE=BE=1,
∵∠AOB=90°,
∴OE=
| 1 |
| 2 |
∴A(-1,1)、B(1,1),
把x=1时,y=1代入y=ax2得:a=1,
∴抛物线的解析式y=x2,
A、B两点的横坐标的乘积为xA•xB=-1
(2)xA•xB=-1为常数,
如图2,过A作AM⊥x轴于M,BN⊥x轴于N,

∴∠AMO=∠BNO=90°,
∴∠MAO+∠AOM=∠AOM+∠BON=90°,
∴∠MAO=∠BON,
∴△AMO∽△BON,
∴
| AM |
| ON |
| OM |
| BN |
∴OM•ON=AM•BN,
设A(xA,yA),B(xB,yB),
∵A(xA,yA),B(xB,yB)在y=x2图象上,
∴,yA=xA2,yB=xB2,
∴-xA•xB=yA•yB=xA2•xB2,
∴xA•xB=-1为常数;
(3)设A(m,m2),B(n,n2),
如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.
∴
| AE |
| OF |
| OE |
| BF |
| m2 |
| n |
| -m |
| n2 |
∵mn≠0,∴mn+1=0,即mn=-1.
设直线AB的解析式为y=kx+b,联立
|
∵m,n是方程的两个根,∴mn=-b.
∴b=1.

∵直线AB与y轴交于点D,则OD=1.
易知C(0,-2),OC=2,∴CD=OC+OD=3.
∵∠BPC=∠OCP,∴PD=CD=3.
设P(a,-2a-2),过点P作PG⊥y轴于点G,则PG=-a,GD=OG-OD=-2a-3.
在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,
即:(-a)2+(-2a-3)2=32,整理得:5a2+12a=0,
解得a=0(舍去)或a=-
| 12 |
| 5 |
当a=-
| 12 |
| 5 |
| 14 |
| 5 |
∴P(-
| 12 |
| 5 |
| 14 |
| 5 |
看了 在平面直角坐标系中,已知A、...的网友还看了以下:
读经纬网定向法图,回答1-2题.图2中B点在h点的()方向.A.西北方向B.东南方向C.西南方向D 2020-05-13 …
2.图2中B点在A点的()方向.A.西北方向B.东南方向C.西南方向D.东北方向 2020-05-13 …
下图1中,ab表示一个细胞周期,cd表示另一个细胞周期.图2中,按箭头方向,表示细胞周期.从图中所 2020-05-17 …
填空:(1)图1所示的金鱼藻在阳光下释放的气体是.(2)在菜豆种子的结构中,图2中B是,将来发育成 2020-05-17 …
案例1和2中,B、C、D公司采取的保险产品开发时机策略分别为( )。 2020-05-22 …
可以扼要的写写过程..1.双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)与直线x=8的 2020-06-21 …
2、在坐标平面内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).¬(1)分别求出 2020-06-25 …
在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点,设过点A(-2√2,-1+√2),B(0 2020-07-05 …
谁能帮我把下面这段话翻成英文?仔细观察图2中(b)的曲线,与(a)的曲线相比是将波谷都变成了波峰. 2020-07-17 …
如图所示为动物细胞培养过程中,动物细胞增殖情况的变化曲线(图中B、D两点表示经筛选后继续培养),请 2020-07-24 …