早教吧 育儿知识 作业答案 考试题库 百科 知识分享

函数y=y(x)由方程sin(x2+y2)+ex-xy2=0所确定,则dydx=2xcos(x2+y2)+ex−y22xy−2ycos(x2+y2)2xcos(x2+y2)+ex−y22xy−2ycos(x2+y2).

题目详情
函数y=y(x)由方程sin(x2+y2)+ex-xy2=0所确定,则
dy
dx
=
2xcos(x2+y2)+ex−y2
2xy−2ycos(x2+y2)
2xcos(x2+y2)+ex−y2
2xy−2ycos(x2+y2)
▼优质解答
答案和解析
解;  设F(x,y)=sin(x2+y2)+ex-xy2,则
Fx=2xcos(x2+y2)+ex−y2,Fy=2ycos(x2+y2)−2xy
dy
dx
=−
Fx
Fy
=
2xcos(x2+y2)+ex−y2
2xy−2ycos(x2+y2)