早教吧作业答案频道 -->数学-->
(1)证明:①Crn+Cr+1n=Cr+1n+1;②Cn+12n+2=2Cn2n+1(其中n,r∈N*,0≤r≤n-1);(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>12)
题目详情
(1)证明:①C
+C
=C
;②C
=2C
(其中n,r∈N*,0≤r≤n-1);
(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>
),首先赢满n+1局者获胜(n∈N*).
①若n=2,求甲获胜的概率;
②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
r n |
r+1 n |
r+1 n+1 |
n+1 2n+2 |
n 2n+1 |
(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>
1 |
2 |
①若n=2,求甲获胜的概率;
②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
▼优质解答
答案和解析
(1)①Cnr+Cnr+1=
+
=
=
=Cn+1r+1;
②由①得C2n+2n+1=C2n+1n+C2n+1n+1=2C
;
(2)①若n=2,甲获胜的概率P=p3+pC32p2(1-p)+pC42p2(1-p)2=p3(6p2-15p+10),
②证明:设乙每一局获胜的概率为q,则p+q=1,0<q<
.
记在甲最终获胜的概率为Pn,则Pn=pn+1+pCn+1npnq+pCn+2npnp2+…+pC2nnpnqn=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn),
∴Pn-Pn+1=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-pn+2(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1),
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1-q)(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)+q(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1-1)+q(Cn+1n-Cn+2n+1+1)+q2(Cn+2n-Cn+3n+1+1)+…+qn(C2nn-C2n+1n+1+C2nn+1)-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1[-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1qn+1(qC2n+2n+1-C2n+1n+1)],
=pn+1qn+1(2qC2n+1n-C2n+1n)],
=pn+1qn+1C2n+1n(2q-1)<0,
所以Pn<Pn+1,
即总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
n! |
r!(n-r)! |
n! |
(r+1)!(n-r-1)! |
n![(r+1)+(n-r)] |
(r+1)!(n-r)! |
(n+1)! |
(r+1)![(n+1)-(r+1)]! |
②由①得C2n+2n+1=C2n+1n+C2n+1n+1=2C
n 2n+1 |
(2)①若n=2,甲获胜的概率P=p3+pC32p2(1-p)+pC42p2(1-p)2=p3(6p2-15p+10),
②证明:设乙每一局获胜的概率为q,则p+q=1,0<q<
1 |
2 |
记在甲最终获胜的概率为Pn,则Pn=pn+1+pCn+1npnq+pCn+2npnp2+…+pC2nnpnqn=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn),
∴Pn-Pn+1=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-pn+2(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1),
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1-q)(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)+q(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1-1)+q(Cn+1n-Cn+2n+1+1)+q2(Cn+2n-Cn+3n+1+1)+…+qn(C2nn-C2n+1n+1+C2nn+1)-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1[-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1qn+1(qC2n+2n+1-C2n+1n+1)],
=pn+1qn+1(2qC2n+1n-C2n+1n)],
=pn+1qn+1C2n+1n(2q-1)<0,
所以Pn<Pn+1,
即总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
看了 (1)证明:①Crn+Cr+...的网友还看了以下:
在学习中.小明发现;当n=1,2,3时.n^2-6n的值都是负数,于是小明猜想:当n为任意正整数时 2020-05-13 …
证明:arctan(n+1)-arctan(n)=arctan{1/[1+n(n+1)]}对1/( 2020-05-13 …
(1)证明:①Crn+Cr+1n=Cr+1n+1;②Cn+12n+2=2Cn2n+1(其中n,r∈ 2020-06-11 …
1:证明如果复数a+ib是实系数方程a0zn+a1z(n—1)+.+a(n-1)z+a0=0的根, 2020-06-12 …
下图是1927年5月前后的中国形势图。解读此图,可从如下几个角度设问命题:(1)此图反映了当时怎样 2020-06-13 …
A和B进行了9局网球比赛,结果A以6:3胜了B.记录本上写明:各局开球是轮流的,9局中有5局不是开 2020-06-22 …
关于线性代数与几何分析的问题,请大家帮下忙~设A(-R^n*n,在欧氏空间R^n中,证明:=,其中 2020-06-27 …
externextern只是用来声明全局变量,在一个文件中定义全局变量,定义方法可以如下两种(都一 2020-07-14 …
一道初中证明题证明1/1×2×3+1/2×3×4+...+1/n(n+1)(n+2)=n(n+3) 2020-08-01 …
请教一个线性代数证明题:令A为一非奇异的n*n矩阵,其中n大于1.证明A伴随矩阵的行列式等于A行列式 2020-12-07 …