已知a>0,b>0,n>1,n∈N*.用数学归纳法证明:an+bn2≥(a+b2)n.
已知a>0,b>0,n>1,n∈N
*.用数学归纳法证明:
≥()n.
答案和解析
证明:(1)当n=2时,左边-右边=
−()2=()2≥0,不等式成立.(2分)
(2)假设当n=k(k∈N*,k>1)时,不等式成立,即≥()k.(4分)
因为a>0,b>0,k>1,k∈N*,
所以(ak+1+bk+1)-(akb+abk)=(ak-bk)(a-b)≥0,于是ak+1+bk+1≥akb+abk.(6分)
当n=k+1时,()k+1=()k•≤•=≤=.
即当n=k+1时,不等式也成立.(9分)
综合(1),(2)知,对于a>0,b>0,n>1,n∈N*,不等式≥()n总成立.
(11分)
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
若d是使a^d≡1(modm)成立的最小正整数,而且存在整数n使a^n≡1(modm),证明d整除 2020-07-20 …
什么是二项式的通式?在二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+ 2020-07-31 …
基本不等式设数列a(n),b(n),且a(1)>b(1)>0,a(n)=(a(n-1)+b(n-1 2020-08-03 …
公式难题,abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?……………… 2020-08-04 …
已知两条不重合的直线m,n两个不重合的平面a,b给出下列命题①若m⊥a,n⊥b且m⊥n则a⊥b②若m 2020-11-02 …
设数列{an}满足a(n+1)=2an+n^2-4n+1.(1)若a1=3,求证:存在f(n)=an 2020-11-19 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
公式难题...abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?…………… 2020-11-28 …
C语言作业急急急11-2输入2个正整数a和n,求a+aa+aaa+aa…a(n个a)之和。要求定义并 2020-12-31 …