早教吧作业答案频道 -->数学-->
证1·n+2·(n-1)+3(n-2)+…+n·1=6/1n·(n+1)(n+2)数学归纳法怎么证呀.急....
题目详情
证1·n+2·(n-1)+3(n-2)+…+n·1=6/1n·(n+1)(n+2)数学归纳法怎么证呀.急....
▼优质解答
答案和解析
你的题抄错了 应是1·n+2·(n-1)+3(n-2)+…+n·1=(1/6)[n·(n+1)(n+2)]证明 (1)当n=1时 左式=1×1=1 右式=1/6×1×(1+1)×(1+2)=1 等式成立
(2)假设当n=k(k∈N)时成立即1·k+2·(k-1)+……+k·1=(1/6)k(k+1)(k+2)① 当n=k+1时
左式=1·(k+1)+2k+……+k·2+(k+1)·1② ②与①左式进行比较
1·(k+1)+2k+…… +(k-1)·3+ k·2+(k+1)·1
1·k + 2(k-1)+……+(k-1)·2+ k·1
1 2 …… k-1 k k+1 (差值)
比较后知②比①的左式多[1+2+……+k+(k+1)]=(1/2)(k+1)(k+2) 所以当n=k+1时左式
=(1/6)k(k+1)(k+2)+(1/2)(k+1)(k+2)==(1/6)(k+1)(k+2)(k+3)也就是当n=k+1时命题成立 由数学归纳法知原命题成立
(2)假设当n=k(k∈N)时成立即1·k+2·(k-1)+……+k·1=(1/6)k(k+1)(k+2)① 当n=k+1时
左式=1·(k+1)+2k+……+k·2+(k+1)·1② ②与①左式进行比较
1·(k+1)+2k+…… +(k-1)·3+ k·2+(k+1)·1
1·k + 2(k-1)+……+(k-1)·2+ k·1
1 2 …… k-1 k k+1 (差值)
比较后知②比①的左式多[1+2+……+k+(k+1)]=(1/2)(k+1)(k+2) 所以当n=k+1时左式
=(1/6)k(k+1)(k+2)+(1/2)(k+1)(k+2)==(1/6)(k+1)(k+2)(k+3)也就是当n=k+1时命题成立 由数学归纳法知原命题成立
看了 证1·n+2·(n-1)+3...的网友还看了以下:
S=0^2×1/N+(1/N)^2×1/N+(2/N)^2×1/N+…+(N—1/N)^2×1/N 2020-05-13 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
(1+1/2+1/3+1/5)*(1/2+1/3+1/5+1/7)-(1+1/2+1/3+1/5+ 2020-06-08 …
关于累差法中的计算问题例如1:3+5+7+……+(2n-1)=(n-1)(3+2n-1)/22:3 2020-06-11 …
1/2-1/n+1<1/2^2+1/3^2+……+1/n^2<n-1/n(n=2,3,4,5,6. 2020-06-27 …
濡傛灉m-3n+4=0,闾d箞(m-3n)虏+7m鲁-3(2m鲁n-m虏n-1)+3(m鲁+2m鲁 2020-07-01 …
1)利用数学归纳法,证明P(n):n^4+2n³-n²+14n能被8整除.当n=k,k^4+2k³ 2020-07-13 …
已知数列{an}得通项公式an=1/n+1+1/n+2+1/n+3+...+1/2n(n∈n*). 2020-07-26 …
用洛必达法则求极限lim(x→∞)n(3^(1/n)-1).我的解是lim(n→∞)n(3^(1/n 2020-11-07 …