早教吧作业答案频道 -->数学-->
用数学归纳法证明:1*n+2*(n-1)+3*(n-2)+...+n*1=1/6*n(n+1)(n+2)?
题目详情
用数学归纳法证明:1*n+2*(n-1)+3*(n-2)+...+n*1=1/6*n(n+1)(n+2)?
▼优质解答
答案和解析
n=1时,左边=1*1=1
右边=1/6*1*2*3=1
左边=右边,等式成立!
假设n=k时成立 (k>1)即:
1*k+2(k-1)+3(k-2)+…+(k-1)*2+k*1=(1/6)k(k+1)(k+2)
当n=k+1时;
左边
=1*(k+1)+2(k+1-1)+3(k+1-2)+…+(k+1-1)*2+(k+1)*1
=1*k+1*1+2(k-1)+2*1+…+k*1+k+(k+1)
=[1*k+2(k-1)+…+(k-1)*2+k*1]+1+2+3+…+k+(k+1)
=(1/6)k(k+1)(k+2)+1+2+3+…+k+(k+1)
=(1/6)k(k+1)(k+2)+1/2*(k+1)*(k+2)
=(1/6)(k+1)(k+2)(k+3)
=(1/6)(k+1)[(k+1)+1][(k+1)+2]
=右边
原式也成立!
综上可知,原式为真!
右边=1/6*1*2*3=1
左边=右边,等式成立!
假设n=k时成立 (k>1)即:
1*k+2(k-1)+3(k-2)+…+(k-1)*2+k*1=(1/6)k(k+1)(k+2)
当n=k+1时;
左边
=1*(k+1)+2(k+1-1)+3(k+1-2)+…+(k+1-1)*2+(k+1)*1
=1*k+1*1+2(k-1)+2*1+…+k*1+k+(k+1)
=[1*k+2(k-1)+…+(k-1)*2+k*1]+1+2+3+…+k+(k+1)
=(1/6)k(k+1)(k+2)+1+2+3+…+k+(k+1)
=(1/6)k(k+1)(k+2)+1/2*(k+1)*(k+2)
=(1/6)(k+1)(k+2)(k+3)
=(1/6)(k+1)[(k+1)+1][(k+1)+2]
=右边
原式也成立!
综上可知,原式为真!
看了 用数学归纳法证明:1*n+2...的网友还看了以下:
1/N为什么不是收敛的无穷级数,而1/n^2确是收敛的.根据比值法,1/N+1/1/N=N/N+1 2020-05-20 …
三个人摸张彩只有一张奖券概率是1/n如何证明设在n(n>2)张彩票中有1张奖券,甲、乙、丙三人依次 2020-06-20 …
高等数学中有关用定义证明数列极限的几个问题,首先,同济五版高数(上)27页最上,在证明Xn=(-1 2020-06-27 …
一个高数证明题(高手进)证明:∑1/(n^2)=π/6,其中求和是从n=1到∞不好意思,应该是证明 2020-08-01 …
一个高数证明题(高手进)证明:∑1/(n^2)=π/6,其中求和是从n=1到∞.不好意思,应该是证 2020-08-01 …
对于n∈N*,用数学归纳法证明:1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1 2020-08-01 …
对于n∈N*,用数学归纳法证明:1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1 2020-08-01 …
对于n属于N,用数学归纳法证明:1/n+1+1/n+2+...+1/3n+1大于1 2020-08-01 …
用数学归纳法证明Sn=1/(n+1)+1/(n+2)+…+1/(3n+1)>1(n∈N+)时,S1 2020-08-03 …
a1=1/2,a1+a2+...+an=n^2an数学归纳法数列{An}满足A1=1/2,A1+A 2020-08-03 …