早教吧作业答案频道 -->数学-->
已知数列{An}的前n项和为Sn,且a1=1,a(n+1)=2Sn+1.证明数列{An}是等比数列求{An}的通项公式.(2)记Tn为等差数列{bn}的前n项和,若Tn有最大值,且Tn=15,a1+b1,a2+b2,a3+b3成等比数列,求Tn
题目详情
已知数列{An}的前n项和为Sn,且a1=1,a(n+1)=2Sn+1.证明数列{An}是等比数列 求{An}的通项公式.(2)记Tn为等差数列{bn}的前n项和,若Tn有最大值,且Tn=15,a1+b1,a2+b2,a3+b3成等比数列,求Tn
▼优质解答
答案和解析
(1)
a(n+1)=2Sn+1--(1)
an=2S(n-1)+1--(2)
(1)-(2),得
a(n+1)-an=2Sn-2S(n-1)=2an
得a(n+1)=3an
所以{an}为等比数列,公比为3
an=3^(n-1)
(2)
{bn}为等差数列,公差为d
则b1+b3=2b2
Tn=b1+b3+b2=3b2=15,则b2=5
b1=5-d,b2=5+d
a1+b1,a2+b2,a3+b3成等比数列
则(a2+b2)^2=(a1+b1)(a3+b3)
(5+3)^2=[1+(5-d)][9+(5+d)]
解得,d=2或-10({bn}的各项均为正,故舍去)
bn=2n+1
Tn=n[3+(2n+1)]/2=n(n+2)
a(n+1)=2Sn+1--(1)
an=2S(n-1)+1--(2)
(1)-(2),得
a(n+1)-an=2Sn-2S(n-1)=2an
得a(n+1)=3an
所以{an}为等比数列,公比为3
an=3^(n-1)
(2)
{bn}为等差数列,公差为d
则b1+b3=2b2
Tn=b1+b3+b2=3b2=15,则b2=5
b1=5-d,b2=5+d
a1+b1,a2+b2,a3+b3成等比数列
则(a2+b2)^2=(a1+b1)(a3+b3)
(5+3)^2=[1+(5-d)][9+(5+d)]
解得,d=2或-10({bn}的各项均为正,故舍去)
bn=2n+1
Tn=n[3+(2n+1)]/2=n(n+2)
看了 已知数列{An}的前n项和为...的网友还看了以下:
已知数列{an}的前n项和为Sn,Sn=12(3n−1)(n∈N*),等差数列{bn}中,bn>0 2020-05-13 …
在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b 2020-05-14 …
PI的 初始值为什么是pi=1#includemain(){int s;float n,t,pi; 2020-05-16 …
已知数列{an}满足a1=t,an+1-an+2=0(t∈N*,n∈N*),记数列{an}的前n项 2020-05-20 …
等比数列{an}的前n项和为Sn,已知对任意n∈N+,点(n,Sn)均在函数y=(b的x次方)+r 2020-06-07 …
考研题,求时间复杂度,请说明下理由,假定问题规模为N时,某递归算法的时间复杂度记为T(N),已知T 2020-06-15 …
数列an满足递推式(a(n+2))*an-(a(n+1))^2=(t^n)*(t-1),a1=1, 2020-08-01 …
(2014•南通二模)设数列{an}的首项不为零,前n项和为Sn,且对任意的r,t∈N*,都有SrS 2020-11-12 …
某商店在最近30天内的价格f(t)与时间t(单位天)的关系是f(t)=t+10(0<t≤30,t∈N 2020-12-31 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …