早教吧作业答案频道 -->数学-->
高二的曲线基本题已知两点P(-2,0)、Q(0,1)及椭圆x^2+y^2/4=1,过点P作斜率为k的直线l交椭圆于A,B两点,设线段AB中点M,连接QM,问k为何值时,直线QM过椭圆的顶点
题目详情
高二的曲线基本题
已知两点P(-2,0)、Q(0,1)及椭圆x^2+y^2/4=1,过点P作斜率为k的直线l交椭圆于A,B两点,设线段AB中点M,连接QM,问k为何值时,直线QM过椭圆的顶点
已知两点P(-2,0)、Q(0,1)及椭圆x^2+y^2/4=1,过点P作斜率为k的直线l交椭圆于A,B两点,设线段AB中点M,连接QM,问k为何值时,直线QM过椭圆的顶点
▼优质解答
答案和解析
当k=0时,M就是O点,符合题意
当k不等于0时,则AB的方程为y=k(x+2)
代入椭圆方程得到x^2(4+k^2)+4x*k^2+4k^2-4=0
判别式Δ=16k^4-16(4+k^2)(k^2-1)>0
所以k^2<4/3
设A(x1,y1)B(x2,y2)
则M((x1+x2)/2,(y1+y2)/2)
根据方程得x1+x2=-4k^2/(4+k^2)
而y1+y2=k(x1+2)+k(x2+2)=k(x1+x2+4)=16k/(4+k^2)
所以M(-2k^2/(4+k^2),8k/(4+k^2))
这理你画画图就知道,由于Q的位置决定了这种情况下只可能过顶点C(1,0)
现在问题就转化成CQM三点共线求k了.
CQ的方程为x+y=1,将M的坐标代入得到一个关于k的方程:3k^2-8k+4=0
所以k=2/3,k=2应该舍去,因为k^2<4/3
综上所述k=0或2/3
当k不等于0时,则AB的方程为y=k(x+2)
代入椭圆方程得到x^2(4+k^2)+4x*k^2+4k^2-4=0
判别式Δ=16k^4-16(4+k^2)(k^2-1)>0
所以k^2<4/3
设A(x1,y1)B(x2,y2)
则M((x1+x2)/2,(y1+y2)/2)
根据方程得x1+x2=-4k^2/(4+k^2)
而y1+y2=k(x1+2)+k(x2+2)=k(x1+x2+4)=16k/(4+k^2)
所以M(-2k^2/(4+k^2),8k/(4+k^2))
这理你画画图就知道,由于Q的位置决定了这种情况下只可能过顶点C(1,0)
现在问题就转化成CQM三点共线求k了.
CQ的方程为x+y=1,将M的坐标代入得到一个关于k的方程:3k^2-8k+4=0
所以k=2/3,k=2应该舍去,因为k^2<4/3
综上所述k=0或2/3
看了 高二的曲线基本题已知两点P(...的网友还看了以下:
已知椭圆x^2/4+y^/3=1,F为右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M,问点M 2020-04-27 …
请问马氏体是一种什么样组织?低碳钢淬火后组织一定是位错M么?M是硬而脆的组织么?钢中的M是一种含碳 2020-05-14 …
///////证明 3^n-2^m=(2^k-3^n)a (n m k为自然数 a为大于的整数 n 2020-05-16 …
关于求最大公约数算法的问题书上是说:1.输入m、n(m为被除数,n为除数)2.m/n得余数r.3. 2020-05-20 …
如图所示,一个底面积问为5*10负三次方m2的圆柱形容器中盛有高度为10cm的水。将一个浮球放入水 2020-07-01 …
关于转化率的一个小问题,对于多物质参与的反应,增加某一物质的量,则该物质的转化率降低,其他反应物的 2020-07-07 …
如图所示,质量为M的小车在光滑的水平面上以v0向左匀速运动,一质量为m的小球从高h处自由下落,与小 2020-07-22 …
m≤f(x)≤M称为有界函数,那么f(x)≤M或m≤f(x)这样的f(x)是有界函数么?高数上无穷 2020-07-31 …
高一物理问题两物体质量分别为M和m,放在同一光滑水平面上,不计摩擦力,分别用力F推M并由M推动m向 2020-08-02 …
一根细绳不可伸长,通过定滑轮,2端系有质量为M和m的小球且M=2m,开始时用手握住M,使M和m离地高 2020-11-28 …