早教吧 育儿知识 作业答案 考试题库 百科 知识分享

线性代数矩阵与其伴随矩阵的乘积为什么是AA*=A*A=|A|E书上给了证明A=(aij)AA*=(bij)则bij=ai1Aj1+ai2Aj2+.+为什么不是ai1A1j

题目详情
线性代数 矩阵与其伴随矩阵的乘积为什么是AA* = A*A = |A|E
书上给了证明 A=(aij)AA*=(bij) 则 bij=ai1Aj1+ai2Aj2+.+ 为什么不是ai1A1j
▼优质解答
答案和解析
因为行列式的值|A|等于每一行的各元素与其代数余子式的之积之和,每一行的各元素与其它行的代数余子式的之积之和等于0.A的伴随矩阵A*是由各元素的代数余子式经过转置而得,所以A乘A*时,乘积的对角线上,都是各行元素与其代数余子式之积之和,都是|A|; 非对角线上的元素,都是A的各行元素与其他行代数余子式之积之和,全是0.根据矩阵性质,提出|A|后的矩阵,对角线上全是1,其他处全是0,就是
AA* = A*A = |A|E