早教吧作业答案频道 -->数学-->
设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余数相等,证明:x²+y²+z²能被x+y+z整除好的追加50
题目详情
设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余
设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余数相等,证明:x²+y²+z²能被x+y+z整除
好的追加50分
设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余数相等,证明:x²+y²+z²能被x+y+z整除
好的追加50分
▼优质解答
答案和解析
由已知x^3,y^3,z^3模p同余,
所以p整除(x^3-y^3)
即p整除(x-y)*(x^2+xy+y^2)
又0<x<y<p,p是质数,故p不能整除(x-y),因此,p整除(x^2+xy+y^2)
同理可证
p整除(y^2+yz+z^2)
p整除(x^2+xz+z^2)
p整除(x^2+xy+y^2-y^2-yz-z^2)
即p整除(x-z)*(x+y+z),
从而,p整除(x+y+z)
已知0<x<y<z<p,
所以x+y+z=p或2p
由于p>3,则(2,p)=1
又因为(x+y+z)与(x^2+xy+y^2)模2同余
故只须证明p整除(x^2+z^2+y^2).
p整除【x(x+y+z)+y^2-xz)】,于是,
p整除(y^2-xz)
同理p整除(x^2-yz),
p整除(z^2-xy).
p整除3(x^2+z^2+y^2).
故p整除(x^2+z^2+y^2).
所以p整除(x^3-y^3)
即p整除(x-y)*(x^2+xy+y^2)
又0<x<y<p,p是质数,故p不能整除(x-y),因此,p整除(x^2+xy+y^2)
同理可证
p整除(y^2+yz+z^2)
p整除(x^2+xz+z^2)
p整除(x^2+xy+y^2-y^2-yz-z^2)
即p整除(x-z)*(x+y+z),
从而,p整除(x+y+z)
已知0<x<y<z<p,
所以x+y+z=p或2p
由于p>3,则(2,p)=1
又因为(x+y+z)与(x^2+xy+y^2)模2同余
故只须证明p整除(x^2+z^2+y^2).
p整除【x(x+y+z)+y^2-xz)】,于是,
p整除(y^2-xz)
同理p整除(x^2-yz),
p整除(z^2-xy).
p整除3(x^2+z^2+y^2).
故p整除(x^2+z^2+y^2).
看了 设p为质数,整数x,y,z满...的网友还看了以下:
若x,y,z为正整数,且满足不等式x/3>=z>=y/2,y+z>=1997,则x的最小值问:以下 2020-05-20 …
x+y+z=36x-y=12x+z-y=18x+y+z=26①x-y=1②2x+z-y=18③x+ 2020-06-06 …
如图所示,正五边形ABCDE的每个顶点对应着一个整数,且这五个整数的和为正数.若其3个相邻顶点对应 2020-08-02 …
1..设x/a+y/b+z/c=1,a/x+b/y+c/z=0,求x*2/a*2+y*2/b*2+z 2020-10-30 …
一、计算:1.y[y-3(x-z)]+y[3z-(y-3x)]2.(2x+3)(x-1)-(3x+2 2020-10-31 …
1.f(x-z,y-z)=0,其中f(u,v)是可微函数,证明:偏z/偏x+偏z/偏y=12.设z= 2020-11-01 …
1.已知1=xy/(x+y),2=yz/(y+z),3=zx/(z+x),则x+y+z=?2..当x 2020-11-01 …
已知(y+z-x)/(x+y+z)=(z+x-y)/(y+z-x)=(x+y-z)/(z+x-y)= 2020-11-01 …
已知:x^2/z+y+v^2/x+z+z^2/x+y=0,求x/z+y+y/x+z+z/x+y的值以 2020-12-31 …
设随机变量(X,Y)的联合概率密度为f(x,y)=cxe−y,0<x<y<+∞0,其他.(1)求常数 2021-01-13 …