早教吧作业答案频道 -->数学-->
设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余数相等,证明:x²+y²+z²能被x+y+z整除好的追加50
题目详情
设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余
设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余数相等,证明:x²+y²+z²能被x+y+z整除
好的追加50分
设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余数相等,证明:x²+y²+z²能被x+y+z整除
好的追加50分
▼优质解答
答案和解析
由已知x^3,y^3,z^3模p同余,
所以p整除(x^3-y^3)
即p整除(x-y)*(x^2+xy+y^2)
又0<x<y<p,p是质数,故p不能整除(x-y),因此,p整除(x^2+xy+y^2)
同理可证
p整除(y^2+yz+z^2)
p整除(x^2+xz+z^2)
p整除(x^2+xy+y^2-y^2-yz-z^2)
即p整除(x-z)*(x+y+z),
从而,p整除(x+y+z)
已知0<x<y<z<p,
所以x+y+z=p或2p
由于p>3,则(2,p)=1
又因为(x+y+z)与(x^2+xy+y^2)模2同余
故只须证明p整除(x^2+z^2+y^2).
p整除【x(x+y+z)+y^2-xz)】,于是,
p整除(y^2-xz)
同理p整除(x^2-yz),
p整除(z^2-xy).
p整除3(x^2+z^2+y^2).
故p整除(x^2+z^2+y^2).
所以p整除(x^3-y^3)
即p整除(x-y)*(x^2+xy+y^2)
又0<x<y<p,p是质数,故p不能整除(x-y),因此,p整除(x^2+xy+y^2)
同理可证
p整除(y^2+yz+z^2)
p整除(x^2+xz+z^2)
p整除(x^2+xy+y^2-y^2-yz-z^2)
即p整除(x-z)*(x+y+z),
从而,p整除(x+y+z)
已知0<x<y<z<p,
所以x+y+z=p或2p
由于p>3,则(2,p)=1
又因为(x+y+z)与(x^2+xy+y^2)模2同余
故只须证明p整除(x^2+z^2+y^2).
p整除【x(x+y+z)+y^2-xz)】,于是,
p整除(y^2-xz)
同理p整除(x^2-yz),
p整除(z^2-xy).
p整除3(x^2+z^2+y^2).
故p整除(x^2+z^2+y^2).
看了 设p为质数,整数x,y,z满...的网友还看了以下:
设两个随机变量X和Y相互独立且同分布:P{X=-1}=P{Y=-1}=12,P{X=1}=P{Y= 2020-05-15 …
设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余设p为质数,整数x, 2020-06-10 …
设随机变量X、Y相互独立且同分布,P(X=0)=P(Y=0)=1/2,P(X=1)=P(Y=1)= 2020-06-19 …
A.孕育(yùn)连翘(qiào)脊椎(jǐ)砖坯(pēi)B.农谚(yàn)渗透(shèn)鲫鱼 2020-07-02 …
设随机变量X,Y相互独立且同分布,P(X=-1)=P(Y=-1)=1/2,P(X=1)=P(Y=1 2020-07-18 …
已知集合A={p|x^2+2(p-1)x+1=0,x∈R},求集合B={y|y=2x-1,x∈A} 2020-08-01 …
高等代数多项式定理的逆定理证明没看懂?逆定理:设p(x)是次数大于零的多项式,如果对于任何多项式f 2020-08-01 …
1、已知幂函数y=x的3-p次方(p∈正整数)的图像关于y轴对称,且在(0.正无穷)上为增函数,求 2020-08-03 …
几何分布无记忆性证明中证:P{x=m+n|x>m}=P(X=m+n,x>m)/P{x>m}=P(X= 2020-10-31 …
已知函数f(x)=logX=x+1/x-1+log2(x-1)+log2(p-x)(p>1).问:f 2020-12-08 …