早教吧作业答案频道 -->数学-->
等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=2,b1=1,b2+S2=8,a5-2b2=a3.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)令cn=an,n为奇数bn,n为偶数,设数列{cn}前n项和为Tn,求T2n.
题目详情
等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=2,b1=1,b2+S2=8,a5-2b2=a3.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=
,设数列{cn}前n项和为Tn,求T2n.nnn1122523
nn
cn=
,设数列{cn}前n项和为Tn,求T2n.cn=
,设数列{cn}前n项和为Tn,求T2n.cn=
,设数列{cn}前n项和为Tn,求T2n.n=
,设数列{cn}前n项和为Tn,求T2n.
an,n为奇数 bn,n为偶数 an,n为奇数 an,n为奇数 an,n为奇数an,n为奇数n,n为奇数bn,n为偶数 bn,n为偶数 bn,n为偶数bn,n为偶数n,n为偶数 nn2n
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=
|
nn
cn=
|
|
|
|
|
| an,n为奇数 |
| bn,n为偶数 |
| an,n为奇数 |
| bn,n为偶数 |
| an,n为奇数 |
| bn,n为偶数 |
| an,n为奇数 |
| bn,n为偶数 |
▼优质解答
答案和解析
(Ⅰ)设数列{ann}的公差为d,数列{bnn}的公比为q,则
由
得
解得
,
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
.
b2+S2=8 a5-2b2=a3 b2+S2=8 b2+S2=8 b2+S2=82+S2=82=8a5-2b2=a3 a5-2b2=a3 a5-2b2=a35-2b2=a32=a33 得
解得
,
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
.
q+4+d=8 2+4d-2q=2+2d q+4+d=8 q+4+d=8 q+4+d=82+4d-2q=2+2d 2+4d-2q=2+2d 2+4d-2q=2+2d 解得
,
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
.
d=2 q=2 d=2 d=2 d=2q=2 q=2 q=2 ,
∴ann=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
. bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
. n=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
. n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
. cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
. n=
2n,n为奇数 2n-1,n为偶数 2n,n为奇数 2n,n为奇数 2n,n为奇数2n-1,n为偶数 2n-1,n为偶数 2n-1,n为偶数n-1,n为偶数 ,
∴T2n2n=(c11+c33+…+c2n-12n-1)+(c22+c44+…+c2n2n)
=[2+6+…+(4n-2)]+(2+233+…+22n-12n-1)
=
+
=2n2+
•4n-
.
n(2+4n-2) 2 n(2+4n-2) n(2+4n-2) n(2+4n-2)2 2 2+
2(1-4n) 1-4 2(1-4n) 2(1-4n) 2(1-4n)n)1-4 1-4 1-4
=2n2+
•4n-
. 2n2+
•4n-
. 2+
2 3 2 2 23 3 3•4n-
. n-
2 3 2 2 23 3 3.
由
|
|
|
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
| n(2+4n-2) |
| 2 |
| 2(1-4n) |
| 1-4 |
=2n2+
| 2 |
| 3 |
| 2 |
| 3 |
|
| b2+S2=8 |
| a5-2b2=a3 |
| b2+S2=8 |
| a5-2b2=a3 |
| b2+S2=8 |
| a5-2b2=a3 |
| b2+S2=8 |
| a5-2b2=a3 |
|
|
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
| n(2+4n-2) |
| 2 |
| 2(1-4n) |
| 1-4 |
=2n2+
| 2 |
| 3 |
| 2 |
| 3 |
|
| q+4+d=8 |
| 2+4d-2q=2+2d |
| q+4+d=8 |
| 2+4d-2q=2+2d |
| q+4+d=8 |
| 2+4d-2q=2+2d |
| q+4+d=8 |
| 2+4d-2q=2+2d |
|
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
| n(2+4n-2) |
| 2 |
| 2(1-4n) |
| 1-4 |
=2n2+
| 2 |
| 3 |
| 2 |
| 3 |
|
| d=2 |
| q=2 |
| d=2 |
| q=2 |
| d=2 |
| q=2 |
| d=2 |
| q=2 |
∴ann=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
| n(2+4n-2) |
| 2 |
| 2(1-4n) |
| 1-4 |
=2n2+
| 2 |
| 3 |
| 2 |
| 3 |
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
| n(2+4n-2) |
| 2 |
| 2(1-4n) |
| 1-4 |
=2n2+
| 2 |
| 3 |
| 2 |
| 3 |
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
| n(2+4n-2) |
| 2 |
| 2(1-4n) |
| 1-4 |
=2n2+
| 2 |
| 3 |
| 2 |
| 3 |
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
| n(2+4n-2) |
| 2 |
| 2(1-4n) |
| 1-4 |
=2n2+
| 2 |
| 3 |
| 2 |
| 3 |
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
| n(2+4n-2) |
| 2 |
| 2(1-4n) |
| 1-4 |
=2n2+
| 2 |
| 3 |
| 2 |
| 3 |
|
| 2n,n为奇数 |
| 2n-1,n为偶数 |
| 2n,n为奇数 |
| 2n-1,n为偶数 |
| 2n,n为奇数 |
| 2n-1,n为偶数 |
| 2n,n为奇数 |
| 2n-1,n为偶数 |
∴T2n2n=(c11+c33+…+c2n-12n-1)+(c22+c44+…+c2n2n)
=[2+6+…+(4n-2)]+(2+233+…+22n-12n-1)
=
| n(2+4n-2) |
| 2 |
| 2(1-4n) |
| 1-4 |
=2n2+
| 2 |
| 3 |
| 2 |
| 3 |
| n(2+4n-2) |
| 2 |
| 2(1-4n) |
| 1-4 |
=2n2+
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
看了 等差数列{an}的前n项和为...的网友还看了以下:
若t为实数,关于x的方程x2-4x+t-2=0的两个非负实数根为a、b,则代数式(a2-1)(b2 2020-07-09 …
simulink中的s函数我用simulink搭建了一个模块,用到了s函数,用来实现以下功能:对于 2020-07-23 …
对数函数问题(已解出一大半了)设x∈[2,8]函数f(x)=1/2loga(ax)·loga(a^ 2020-08-02 …
已知数列{an}是等差数列,数列{bn}满足bn=(1/2)^an已知数列{an}是等差数列,数列 2020-08-02 …
已知函数f(x)在R上满足f(x)=2f(2-x)-x^2+8x-8,就f(x)的解析式f(2-t) 2020-10-31 …
已知x,y是正整数,且xy+x+y=23,x^2+xy^2=120,求x^2+y^2的值.设m=xy 2020-11-03 …
(2010•藁城市一模)阅读下列范例,按要求解答问题.例:已知实数a,b,c满足:a+b+2c=1, 2020-11-28 …
阅读下列范例,按要求解答问题.例:已知实数a,b,c满足:a+b+2c=1,a2+b2+6c+32= 2020-11-28 …
交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为T,其范围为[0,10],分别有五个级 2020-12-05 …
把下列参数方程化为普通方程,并说明是什么曲线.(1)x=t2−3t+1y=t−1.(t为参数);(2 2021-02-10 …