早教吧作业答案频道 -->数学-->
等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=2,b1=1,b2+S2=8,a5-2b2=a3.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)令cn=an,n为奇数bn,n为偶数,设数列{cn}前n项和为Tn,求T2n.
题目详情
等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=2,b1=1,b2+S2=8,a5-2b2=a3.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=
,设数列{cn}前n项和为Tn,求T2n.nnn1122523
nn
cn=
,设数列{cn}前n项和为Tn,求T2n.cn=
,设数列{cn}前n项和为Tn,求T2n.cn=
,设数列{cn}前n项和为Tn,求T2n.n=
,设数列{cn}前n项和为Tn,求T2n.
an,n为奇数 bn,n为偶数 an,n为奇数 an,n为奇数 an,n为奇数an,n为奇数n,n为奇数bn,n为偶数 bn,n为偶数 bn,n为偶数bn,n为偶数n,n为偶数 nn2n
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=
|
nn
cn=
|
|
|
|
|
an,n为奇数 |
bn,n为偶数 |
an,n为奇数 |
bn,n为偶数 |
an,n为奇数 |
bn,n为偶数 |
an,n为奇数 |
bn,n为偶数 |
▼优质解答
答案和解析
(Ⅰ)设数列{ann}的公差为d,数列{bnn}的公比为q,则
由
得
解得
,
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
.
b2+S2=8 a5-2b2=a3 b2+S2=8 b2+S2=8 b2+S2=82+S2=82=8a5-2b2=a3 a5-2b2=a3 a5-2b2=a35-2b2=a32=a33 得
解得
,
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
.
q+4+d=8 2+4d-2q=2+2d q+4+d=8 q+4+d=8 q+4+d=82+4d-2q=2+2d 2+4d-2q=2+2d 2+4d-2q=2+2d 解得
,
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
.
d=2 q=2 d=2 d=2 d=2q=2 q=2 q=2 ,
∴ann=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
. bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
. n=2n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
. n-1.
(Ⅱ)由(Ⅰ),cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
. cn=
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
+
=2n2+
•4n-
. n=
2n,n为奇数 2n-1,n为偶数 2n,n为奇数 2n,n为奇数 2n,n为奇数2n-1,n为偶数 2n-1,n为偶数 2n-1,n为偶数n-1,n为偶数 ,
∴T2n2n=(c11+c33+…+c2n-12n-1)+(c22+c44+…+c2n2n)
=[2+6+…+(4n-2)]+(2+233+…+22n-12n-1)
=
+
=2n2+
•4n-
.
n(2+4n-2) 2 n(2+4n-2) n(2+4n-2) n(2+4n-2)2 2 2+
2(1-4n) 1-4 2(1-4n) 2(1-4n) 2(1-4n)n)1-4 1-4 1-4
=2n2+
•4n-
. 2n2+
•4n-
. 2+
2 3 2 2 23 3 3•4n-
. n-
2 3 2 2 23 3 3.
由
|
|
|
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
n(2+4n-2) |
2 |
2(1-4n) |
1-4 |
=2n2+
2 |
3 |
2 |
3 |
|
b2+S2=8 |
a5-2b2=a3 |
b2+S2=8 |
a5-2b2=a3 |
b2+S2=8 |
a5-2b2=a3 |
b2+S2=8 |
a5-2b2=a3 |
|
|
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
n(2+4n-2) |
2 |
2(1-4n) |
1-4 |
=2n2+
2 |
3 |
2 |
3 |
|
q+4+d=8 |
2+4d-2q=2+2d |
q+4+d=8 |
2+4d-2q=2+2d |
q+4+d=8 |
2+4d-2q=2+2d |
q+4+d=8 |
2+4d-2q=2+2d |
|
∴an=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
n(2+4n-2) |
2 |
2(1-4n) |
1-4 |
=2n2+
2 |
3 |
2 |
3 |
|
d=2 |
q=2 |
d=2 |
q=2 |
d=2 |
q=2 |
d=2 |
q=2 |
∴ann=2+2(n-1)=2n,bn=2n-1.
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
n(2+4n-2) |
2 |
2(1-4n) |
1-4 |
=2n2+
2 |
3 |
2 |
3 |
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
n(2+4n-2) |
2 |
2(1-4n) |
1-4 |
=2n2+
2 |
3 |
2 |
3 |
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
n(2+4n-2) |
2 |
2(1-4n) |
1-4 |
=2n2+
2 |
3 |
2 |
3 |
(Ⅱ)由(Ⅰ),cn=
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
n(2+4n-2) |
2 |
2(1-4n) |
1-4 |
=2n2+
2 |
3 |
2 |
3 |
|
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=[2+6+…+(4n-2)]+(2+23+…+22n-1)
=
n(2+4n-2) |
2 |
2(1-4n) |
1-4 |
=2n2+
2 |
3 |
2 |
3 |
|
2n,n为奇数 |
2n-1,n为偶数 |
2n,n为奇数 |
2n-1,n为偶数 |
2n,n为奇数 |
2n-1,n为偶数 |
2n,n为奇数 |
2n-1,n为偶数 |
∴T2n2n=(c11+c33+…+c2n-12n-1)+(c22+c44+…+c2n2n)
=[2+6+…+(4n-2)]+(2+233+…+22n-12n-1)
=
n(2+4n-2) |
2 |
2(1-4n) |
1-4 |
=2n2+
2 |
3 |
2 |
3 |
n(2+4n-2) |
2 |
2(1-4n) |
1-4 |
=2n2+
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
看了 等差数列{an}的前n项和为...的网友还看了以下:
一棵树共有n个节点的数,其中所有分支节点的度均为k,则该数中叶子节点的个数为A.n(k-1)/kB 2020-04-25 …
已知函数f(x)=-2x+1,当x∈[An,Bn]时,f(x)的值域为[A(n+1),B(n+1) 2020-04-27 …
】某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,继续看下后面每一排都比前一排多一个 2020-05-16 …
括号内为下标:S(n)为a(n)的前n项和.a(1)=a,a(n+1)=S(n)+3^n.设b(n 2020-05-22 …
采用顺序查找法查找长度为n的线性表时,每个元素的平均查找长度为(),A.(n+1)/2B.(n-1) 2020-05-23 …
用a^n-b^n=(a-b)(a^(n-1)+a^(n-2)*b+...+ab^(n-2)+b^( 2020-07-14 …
证明:在n个正数的和为定值条件x1+x2+…+xn=a下,这n个正数的乘积x1x2…xn的最大值为 2020-07-30 …
算法时间复杂度的最高次幂项的系数很大怎么办假设时间复杂度多项式为a*n^3+b*n^2+c*n+d 2020-08-03 …
子集与推出关系课本例题:a:正整数N被5整除,p:正整数N的个位数是5.课本解题:A={n|n=5k 2020-11-28 …
自认数列NB的请进已知一个数列的递推式为ka(n-1)+d=a(n)求证它的通项公式为a(n)=a( 2020-12-10 …