早教吧作业答案频道 -->数学-->
已知函数f(x)=2^x+a×2^(-x)是定义域为R的奇函数(1)求实数a的值(2)证明f(x)是R上的单调函数(3)若对于任意的t∈R,不等式f(t^2-2t)+f(t^2-k)>0恒成立,求k的取值范围.
题目详情
已知函数f(x)=2^x+a×2^(-x)是定义域为R的奇函数
(1)求实数a的值
(2)证明f(x)是R上的单调函数
(3)若对于任意的t∈R,不等式f(t^2-2t)+f(t^2-k)>0恒成立,求k的取值范围.
(1)求实数a的值
(2)证明f(x)是R上的单调函数
(3)若对于任意的t∈R,不等式f(t^2-2t)+f(t^2-k)>0恒成立,求k的取值范围.
▼优质解答
答案和解析
答:
f(x)=2^x+a*2^(-x)
=2^x+a/2^x
1)
f(x)是定义域为R的奇函数,则有:
f(0)=1+a=0
解得:a=-1
2)
f(x)=2^x-2^(-x)
求导:f'(x)=(2^x)ln2+2^(-x)ln2>0
所以:f(x)是R上的单调递增函数
3)
任意实数t,f(t^2-2t)+f(t^2-k)>0恒成立
所以:
f(t^2-2t)>-f(t^2-k)=f(k-t^2)
因为:f(x)是单调递增函数
所以:
t^2-2t>k-t^2
k<2t^2-2t
当t=1/2时2t^2-2t取得最小值-1/2
所以:k
f(x)=2^x+a*2^(-x)
=2^x+a/2^x
1)
f(x)是定义域为R的奇函数,则有:
f(0)=1+a=0
解得:a=-1
2)
f(x)=2^x-2^(-x)
求导:f'(x)=(2^x)ln2+2^(-x)ln2>0
所以:f(x)是R上的单调递增函数
3)
任意实数t,f(t^2-2t)+f(t^2-k)>0恒成立
所以:
f(t^2-2t)>-f(t^2-k)=f(k-t^2)
因为:f(x)是单调递增函数
所以:
t^2-2t>k-t^2
k<2t^2-2t
当t=1/2时2t^2-2t取得最小值-1/2
所以:k
作业帮用户
2017-10-28
看了 已知函数f(x)=2^x+a...的网友还看了以下:
x=4t+(1/t)-6,t∈(0,+∞),求x取值范围.x=4t+(1/t)-6>=2√4-6, 2020-05-13 …
已知x、y都是近似数,x≈100,y≈100.0,写出x、y的取值范围x取值99.5≤x<100. 2020-05-13 …
都来看看这道题若方程组x+2y=1的解x,y得值都不大于1,求m的取值范围x-2y=m 2020-05-13 …
函数f(x)=x^2+2x+a/x.x∈[1,+∞] (1)当a=1/2时求函数f(x)的最小值( 2020-05-15 …
已知集合A={x||x|≤2x∈R},B{x|x≥a}且A是B的子集,则实数a的取值范围={x|| 2020-05-15 …
f(x)=x^3+ax^2-a^2x+m(a>0)若对任意的a∈[3,6],不等式f(x)≤1在X 2020-05-16 …
已知y-1与x成正比例且x=-2时y=4,求出y与x之间的函数关糸式;设点(a,-2)在这个图象上 2020-06-06 …
方程x+(k-2)x+5-k=0的两根一根大于2,另一根小于2,求实数k的取值范围x的平方+(k- 2020-06-06 …
f(x)=x^2-2kx+k+1在[k,+∞)上为闭函数,求k取值范围x^2-2kx+k+1=xx 2020-06-11 …
初二数学1.已知直线y=2x+8与x轴和Y轴的交点的坐标分别是,.与两条坐标轴围成的三角形的面积是 2020-06-27 …