早教吧作业答案频道 -->数学-->
已知函数f(x)=2^x+a×2^(-x)是定义域为R的奇函数(1)求实数a的值(2)证明f(x)是R上的单调函数(3)若对于任意的t∈R,不等式f(t^2-2t)+f(t^2-k)>0恒成立,求k的取值范围.
题目详情
已知函数f(x)=2^x+a×2^(-x)是定义域为R的奇函数
(1)求实数a的值
(2)证明f(x)是R上的单调函数
(3)若对于任意的t∈R,不等式f(t^2-2t)+f(t^2-k)>0恒成立,求k的取值范围.
(1)求实数a的值
(2)证明f(x)是R上的单调函数
(3)若对于任意的t∈R,不等式f(t^2-2t)+f(t^2-k)>0恒成立,求k的取值范围.
▼优质解答
答案和解析
答:
f(x)=2^x+a*2^(-x)
=2^x+a/2^x
1)
f(x)是定义域为R的奇函数,则有:
f(0)=1+a=0
解得:a=-1
2)
f(x)=2^x-2^(-x)
求导:f'(x)=(2^x)ln2+2^(-x)ln2>0
所以:f(x)是R上的单调递增函数
3)
任意实数t,f(t^2-2t)+f(t^2-k)>0恒成立
所以:
f(t^2-2t)>-f(t^2-k)=f(k-t^2)
因为:f(x)是单调递增函数
所以:
t^2-2t>k-t^2
k<2t^2-2t
当t=1/2时2t^2-2t取得最小值-1/2
所以:k
f(x)=2^x+a*2^(-x)
=2^x+a/2^x
1)
f(x)是定义域为R的奇函数,则有:
f(0)=1+a=0
解得:a=-1
2)
f(x)=2^x-2^(-x)
求导:f'(x)=(2^x)ln2+2^(-x)ln2>0
所以:f(x)是R上的单调递增函数
3)
任意实数t,f(t^2-2t)+f(t^2-k)>0恒成立
所以:
f(t^2-2t)>-f(t^2-k)=f(k-t^2)
因为:f(x)是单调递增函数
所以:
t^2-2t>k-t^2
k<2t^2-2t
当t=1/2时2t^2-2t取得最小值-1/2
所以:k
作业帮用户
2017-10-28
看了 已知函数f(x)=2^x+a...的网友还看了以下:
已知函数f(x)=kx+p(k≠0)及实数m、n,(m0,f(n)>0,则对一切x∈[m,n],都 2020-05-13 …
求f(k)=(0.5)^K的Z变换F(Z),求f(k)=(0.5)^K的Z变换F(Z),F(Z)= 2020-06-04 …
已知f(x)=|x-k|+|x-2k|(k>0).(1)当x属于R,k为常数时,求f(x)的最小值 2020-06-11 …
已知函数fx满足:对任意x,y∈R,都有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立 2020-06-12 …
已知函数f(x)=2x/(x^2+6),若f(x)>k的解为x<-3或x>-2,求k的值?已知函数 2020-06-27 …
设函数f(x)=a1sin(x+a1)+a2sin(x+a2)+.+ansin(x+an),其中a 2020-07-18 …
已知函数f(x)=2e2x+2x+sin2x.(Ⅰ)试判断函数f(x)的单调性并说明理由;(Ⅱ)若 2020-08-02 …
已知函数f(x)=1+lnx-k(x-2)x,其中k为常数.(1)若k=0,求曲线y=f(x)在点( 2020-11-01 …
已知函数f(x)=x+ax2+bx+1是奇函数.(1)求实数a和b的值;(2)证明y=f(x)在区间 2020-12-22 …
导数分母系数不是1怎么算我说的是这种,若f'(x0)=2,求lim(k→0)[f(x0-k)-f(x 2020-12-23 …