早教吧作业答案频道 -->数学-->
已知函数f(x)=2^x+a×2^(-x)是定义域为R的奇函数(1)求实数a的值(2)证明f(x)是R上的单调函数(3)若对于任意的t∈R,不等式f(t^2-2t)+f(t^2-k)>0恒成立,求k的取值范围.
题目详情
已知函数f(x)=2^x+a×2^(-x)是定义域为R的奇函数
(1)求实数a的值
(2)证明f(x)是R上的单调函数
(3)若对于任意的t∈R,不等式f(t^2-2t)+f(t^2-k)>0恒成立,求k的取值范围.
(1)求实数a的值
(2)证明f(x)是R上的单调函数
(3)若对于任意的t∈R,不等式f(t^2-2t)+f(t^2-k)>0恒成立,求k的取值范围.
▼优质解答
答案和解析
答:
f(x)=2^x+a*2^(-x)
=2^x+a/2^x
1)
f(x)是定义域为R的奇函数,则有:
f(0)=1+a=0
解得:a=-1
2)
f(x)=2^x-2^(-x)
求导:f'(x)=(2^x)ln2+2^(-x)ln2>0
所以:f(x)是R上的单调递增函数
3)
任意实数t,f(t^2-2t)+f(t^2-k)>0恒成立
所以:
f(t^2-2t)>-f(t^2-k)=f(k-t^2)
因为:f(x)是单调递增函数
所以:
t^2-2t>k-t^2
k<2t^2-2t
当t=1/2时2t^2-2t取得最小值-1/2
所以:k
f(x)=2^x+a*2^(-x)
=2^x+a/2^x
1)
f(x)是定义域为R的奇函数,则有:
f(0)=1+a=0
解得:a=-1
2)
f(x)=2^x-2^(-x)
求导:f'(x)=(2^x)ln2+2^(-x)ln2>0
所以:f(x)是R上的单调递增函数
3)
任意实数t,f(t^2-2t)+f(t^2-k)>0恒成立
所以:
f(t^2-2t)>-f(t^2-k)=f(k-t^2)
因为:f(x)是单调递增函数
所以:
t^2-2t>k-t^2
k<2t^2-2t
当t=1/2时2t^2-2t取得最小值-1/2
所以:k
作业帮用户
2017-10-28
看了 已知函数f(x)=2^x+a...的网友还看了以下:
三角函数问题已知函数f(x)=sinx-cosx,x∈R.(1)求函数f(x)在[0,2π]内的单 2020-04-12 …
求几条基本初等函数的题1、设关于x的函数f(x)=4^x—2^x+1—b(b属于R),若函数有零点 2020-04-27 …
设y=f(X)满足(1)X属于R(2)对任意X,y属于R,f(x+y)=f(x)+f(y)-1(3 2020-05-13 …
matlab matlabc=40r=120a=96o=20y=3(角度)f=0.2[x]=sol 2020-05-16 …
映射题,求正解.首先我读不懂题(f(n)∈R,v∈R,u∈R)求所有的f:R→R满足:(1)f(2 2020-06-07 …
关于高一函数的换元法已知f(x-1)=x²-2x,求f(x)老师给的解题过程:设t=x-1∵x∈R 2020-08-01 …
设f:R×R→R×R,f()=,求f的反函数 2020-08-01 …
设函数f(x)=x^2+ax+bcosx(a,b∈R),集合A={x∣f(x)=0,x∈R},B={ 2020-11-01 …
文科函数,急1函数f(x)=x^3-a^x-1,若f(x)在实数集R上单调递增,求实数a的取值范围? 2020-11-21 …
已知电磁波的速度V近似等于光速,根据波长λ,频率f和波速r的关系r=λf,求:1,家用微波炉中使用频 2020-12-09 …