早教吧作业答案频道 -->其他-->
高一关于函数的题.已知函数y=x+t/x有如下性质:如果常数t>o,那么该函数在(0,√t)上是减函数,在(√t,+∞)上是增函数.(1)已知f(x)=(4x²-12x-3)/(2x+1),x∈[0,1],利用上述性质,求函数f(x)的单
题目详情
高一关于函数的题.
已知函数y=x+t/x有如下性质:如果常数t>o,那么该函数在(0,√t)上是减函数,在(√t,+∞)上是增函数.
(1)已知f(x)=(4x²-12x-3)/(2x+1),x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的取值
已知函数y=x+t/x有如下性质:如果常数t>o,那么该函数在(0,√t)上是减函数,在(√t,+∞)上是增函数.
(1)已知f(x)=(4x²-12x-3)/(2x+1),x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的取值
▼优质解答
答案和解析
(1)令2x+1=t,则2x=t-1,由于 x∈[0,1],所以t∈[1,3]
于是
h(t)=f(x)=[(t-1)² -6(t-1)-3]/t=(t²-8t +4/t)= t +4/t -8
由对勾函数的性质,知 h(t)在t∈[1,2]上减,在t∈[2,3]上增,
从而 f(x)在x∈[0,1/2]上减,在x∈[1/2,1]上增.值域为[-4,-3]
(2)g(x)的值域为[-2a,1-2a],由条件知,g(x)的值域是f(x)值域的子集,
从而 -2a≥-4且 1-2a≤-3
解得1≤a≤2
于是
h(t)=f(x)=[(t-1)² -6(t-1)-3]/t=(t²-8t +4/t)= t +4/t -8
由对勾函数的性质,知 h(t)在t∈[1,2]上减,在t∈[2,3]上增,
从而 f(x)在x∈[0,1/2]上减,在x∈[1/2,1]上增.值域为[-4,-3]
(2)g(x)的值域为[-2a,1-2a],由条件知,g(x)的值域是f(x)值域的子集,
从而 -2a≥-4且 1-2a≤-3
解得1≤a≤2
看了 高一关于函数的题.已知函数y...的网友还看了以下:
在线等高一的指数与指数幂的运算1.已知a^x=根号2+1求(a^2x)-(a^-2x)/(a^x) 2020-05-20 …
x趋近于0时,x^2是x^3的低阶无穷大?究竟这个阶是不是看近似的指数?还是看比值的大小.我知道x 2020-06-17 …
高一基础分段函数题两道(30)一,已知f(x)=X^2,X>0,1,X=0-2X+1,X<01,画 2020-07-20 …
高一复合函数定义域1.已知f(x)的定义域是[1,2],求f(x)的定义域[2,3]2.已知f(x 2020-07-30 …
线性代数高手来看这个简单的问题已知任意不等于0的x,使得A(x)^T*(Bx)+B(x)^T*(AX 2020-11-03 …
高一的函数定义域的求法.已知f(x),求f[g(x)],例如已知f(x)的定义域为(1,2),求f( 2020-11-10 …
急!高一“函数的概念”中的几道题目.1.已知函数f(x+1)=X^2-4x+1,求f(x)2.[变式 2020-12-08 …
高一数学疑问这是一些函数变换(1)已知函数f(x)的定义域,求f[g(x)]的定义域,实质上是指已知 2020-12-18 …
体积=长X宽X高X密度若已知体积、宽度、高度、密度.请问怎么求长度若已知体积、长度、高度、密度.请问 2020-12-19 …
高中数学怎么做求函数的值域1、y=(1-x²)/(1+x²)2、y=√(5+4x-x²)已知f(x) 2021-02-18 …