早教吧作业答案频道 -->其他-->
(2013•普陀区一模)设函数f(x)和g(x)都是定义在集合M上的函数,对于任意的x∈M,都有f(g(x))=g(f(x))成立,称函数f(x)与g(x)在M上互为“H函数”.(1)函数f(x)=2x与g(
题目详情
(2013•普陀区一模)设函数f(x)和g(x)都是定义在集合M上的函数,对于任意的x∈M,都有f(g(x))=g(f(x))成立,称函数f(x)与g(x)在M上互为“H函数”.
(1)函数f(x)=2x与g(x)=sinx在M上互为“H函数”,求集合M;
(2)若函数f(x)=ax(a>0且a≠1)与g(x)=x+1在集合M上互为“H函数”,求证:a>1;
(3)函数f(x)=x+2与g(x)在集合M={x|x>-1}且x≠2k-3,k∈N*}上互为“H函数”,当0≤x<1时,g(x)=log2(x+1),且g(x)在(-1,1)上是偶函数,求函数g(x)在集合M上的解析式.
(1)函数f(x)=2x与g(x)=sinx在M上互为“H函数”,求集合M;
(2)若函数f(x)=ax(a>0且a≠1)与g(x)=x+1在集合M上互为“H函数”,求证:a>1;
(3)函数f(x)=x+2与g(x)在集合M={x|x>-1}且x≠2k-3,k∈N*}上互为“H函数”,当0≤x<1时,g(x)=log2(x+1),且g(x)在(-1,1)上是偶函数,求函数g(x)在集合M上的解析式.
▼优质解答
答案和解析
(1)由f(g(x)=g(f(x)),得2sinx=sin2x,
化简得,2sinx(1-cosx)=0,sinx=0或cosx=1,…(2分)
解得x=kπ或x=2kπ,k∈Z,
即集合M={x|x=kπ}k∈Z.…(2分)
(若学生写出的答案是集合M={x|x=kπ,k∈Z}的非空子集,扣(1分),以示区别.)
(2)证明:由题意得,ax+1=ax+1(a>0且a≠1)…(2分)
变形得,ax(a-1)=1,由于a>0且a≠1,ax=
,…(2分)
因为ax>0,所以
>0,即a>1.…(2分)
(3)当-1<x<0,则0<-x<1,由于函数g(x)在(-1,1)上是偶函数
则g(x)=g(-x)=log2(1-x)
所以当-1<x<1时,g(x)=log2(1+|x|)…(2分)
由于f(x)=x+2与函数g(x)在集合M上“互为H函数”
所以当x∈M,f(g(x)=g(f(x))恒成立,
g(x)+2=g(x+2)对于任意的x∈(2n-1,2n+1)(n∈N)恒成立,
即g(x+2)-g(x)=2…(2分)
所以g[x+2(n-1)+2]-g[x+2(n-1)]=2,
即g(x+2n)-g[x+2(n-1)]=2
所以g(x+2n)=g(x)+2n,
当x∈(2n-1,2n+1)(n∈N)时,x-2n∈(-1,1)g(x-2n)=log2(1+|x-2n|)…(2分)
所以当x∈M时,g(x)=g[(x-2n)+2n]=g(x-2n)+2n=log2(1+|x-2n|)+2n.…(2分)
化简得,2sinx(1-cosx)=0,sinx=0或cosx=1,…(2分)
解得x=kπ或x=2kπ,k∈Z,
即集合M={x|x=kπ}k∈Z.…(2分)
(若学生写出的答案是集合M={x|x=kπ,k∈Z}的非空子集,扣(1分),以示区别.)
(2)证明:由题意得,ax+1=ax+1(a>0且a≠1)…(2分)
变形得,ax(a-1)=1,由于a>0且a≠1,ax=
1 |
a−1 |
因为ax>0,所以
1 |
a−1 |
(3)当-1<x<0,则0<-x<1,由于函数g(x)在(-1,1)上是偶函数
则g(x)=g(-x)=log2(1-x)
所以当-1<x<1时,g(x)=log2(1+|x|)…(2分)
由于f(x)=x+2与函数g(x)在集合M上“互为H函数”
所以当x∈M,f(g(x)=g(f(x))恒成立,
g(x)+2=g(x+2)对于任意的x∈(2n-1,2n+1)(n∈N)恒成立,
即g(x+2)-g(x)=2…(2分)
所以g[x+2(n-1)+2]-g[x+2(n-1)]=2,
即g(x+2n)-g[x+2(n-1)]=2
所以g(x+2n)=g(x)+2n,
当x∈(2n-1,2n+1)(n∈N)时,x-2n∈(-1,1)g(x-2n)=log2(1+|x-2n|)…(2分)
所以当x∈M时,g(x)=g[(x-2n)+2n]=g(x-2n)+2n=log2(1+|x-2n|)+2n.…(2分)
看了 (2013•普陀区一模)设函...的网友还看了以下:
一个函数关于某点对称的另一个函数比如2次函数y=ax^2+bx+c与G关于对称求G函数的解析式怎么 2020-05-16 …
(2013•普陀区一模)设函数f(x)和g(x)都是定义在集合M上的函数,对于任意的x∈M,都有f 2020-06-08 …
1已知函数f(x)=1/√1-x^2的定义或为G,函数G(x)=1/√2+x-6x^2的定义或为H 2020-06-29 …
设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是().设函数f(x)和g( 2020-07-08 …
(2014•嘉兴模拟)若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则一定成立 2020-07-21 …
=SUMIF('BS&PL201212'!A:A,'P&L'!B70&"-",'BS&PL2012 2020-07-23 …
自学高中数学应按什么顺序学?应先学什么?最后学什么?请排个顺序函数立体几何算法统计与概率三角函数平 2020-08-02 …
对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数.①对任意的x∈[0,1], 2020-08-03 …
已知R上的连续函数g(x)满足:①当x>0时,g′(x)>0恒成立(g′(x)为函数g(x)的导函数 2020-11-19 …
matlab编程:已知f(x)=x+sin(x),g(x)=cos(2+x);求f和g函数的复合函数 2021-01-14 …