早教吧作业答案频道 -->数学-->
如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
题目详情
如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点. (1)求证:△MBA≌△NDC; (2)四边形MPNQ是什么样的特殊四边形?请说明理由. ![]() |
如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.

如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.

如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.

如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.


▼优质解答
答案和解析
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB≌△NDC,
∵
,
∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∴MP=
BM,
∴MP=MQ,
∴四边形MQNP是菱形.
(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
(1)证明见解析(2)菱形,理由见解析 |
(1)证明见解析(2)菱形,理由见解析
(1)证明见解析(2)菱形,理由见解析
(1)证明见解析(2)菱形,理由见解析
(1)证明见解析(2)菱形,理由见解析
(1)证明见解析(2)菱形,理由见解析 证明:(1)∵四边形ABCD是矩形, ∵AB=CD,AD=BC,∠A=∠C=90°, ∵在矩形ABCD中,M、N分别是AD.BC的中点, ∴AM= ![]() ![]() ∴AM=CN, 在△MAB≌△NDC, ∵ ![]() ∴△MAB≌△NDC; (2)四边形MPNQ是菱形, 理由如下:连接AN, 易证:△ABN≌△BAM, ∴AN=BM, ∵△MAB≌△NDC, ∴BM=DN, ∵P、Q分别是BM、DN的中点, ∴PM=NQ, ∵DM=BN,DQ=BP,∠MDQ=∠NBP, ∴△MQD≌△NPB. ∴四边形MPNQ是平行四边形, ∵M是AB中点,Q是DN中点, ∴MQ= ![]() ∴MQ= ![]() ∴MP= ![]() ∴MP=MQ, ∴四边形MQNP是菱形. ![]() (1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC; (2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形. |
证明:(1)∵四边形ABCD是矩形,
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB≌△NDC,
∵
,
∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∴MP=
BM,
∴MP=MQ,
∴四边形MQNP是菱形.
(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM=


∴AM=CN,
在△MAB≌△NDC,
∵

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ=

∴MQ=

∴MP=

∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形,
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB≌△NDC,
∵
,
∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∴MP=
BM,
∴MP=MQ,
∴四边形MQNP是菱形.
(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM=


∴AM=CN,
在△MAB≌△NDC,
∵

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ=

∴MQ=

∴MP=

∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形,
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB≌△NDC,
∵
,
∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∴MP=
BM,
∴MP=MQ,
∴四边形MQNP是菱形.
(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM=


∴AM=CN,
在△MAB≌△NDC,
∵

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ=

∴MQ=

∴MP=

∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形,
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB≌△NDC,
∵
,
∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∴MP=
BM,
∴MP=MQ,
∴四边形MQNP是菱形.
(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形,∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM=


∴AM=CN,
在△MAB≌△NDC,
∵

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ=

∴MQ=

∴MP=

∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM=


∴AM=CN,
在△MAB≌△NDC,
∵

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ=

∴MQ=

∴MP=

∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
看了 如图,在矩形ABCD中,M、...的网友还看了以下:
一道史上最难得函数题!已知实数a,b,c满足条件a/(m+2)+b/(m+1)+c/m=0,其中m 2020-05-13 …
(2x)^2+(-3)^2-(-2x)^2 (-1/4a^3n-1 b^m-1 )^2*(4a^3 2020-05-16 …
已知a=(1,2),b=(m,-1)\x0c(1)若a与b的夹角为3/4派,求m的值?\x0c(2 2020-06-27 …
数学求极限问题啊lima0x^n+a1x^n-1+...+a(n-1)x+a(n)/b0x^m+b 2020-07-09 …
数学函数题!2007山东日照)已知二次函数y=x2-x+a(a>0),当自变量x取m时,其相应的函 2020-07-21 …
1.分解a²-a-12的结果为()A.(a-3)(a+4)B.(a+3)(a-4)C.(a-6)( 2020-08-03 …
1.设m是任意数,必定在第四象限内的带内的坐标是()A.(m,m平方)B.(|m|+1,-|m|) 2020-08-03 …
一道高中不等式题已知实数a、b、c满足条件:a/(m+2)+b/(m+1)+c/m=0,其中m是正 2020-08-03 …
数学高手进如果点A(2m,3-n)在第二象限内,那么点B(m-1,n-4)在第几象限?如果点M(3m 2020-11-24 …
10.设有定义intm=1,n=6;赋值使m为8的语句是:A.m=(n++)+1;B.m=1+(++ 2020-12-31 …