早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.

题目详情
如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.


▼优质解答
答案和解析
(1)证明见解析(2)菱形,理由见解析
(1)证明见解析(2)菱形,理由见解析
(1)证明见解析(2)菱形,理由见解析
(1)证明见解析(2)菱形,理由见解析
(1)证明见解析(2)菱形,理由见解析
(1)证明见解析(2)菱形,理由见解析
证明:(1)∵四边形ABCD是矩形,
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM= AD,CN= BC,
∴AM=CN,
在△MAB≌△NDC,

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ= AN,
∴MQ= BM,
∴MP= BM,
∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形,
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM= AD,CN= BC,
∴AM=CN,
在△MAB≌△NDC,

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ= AN,
∴MQ= BM,
∴MP= BM,
∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形,
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM= AD,CN= BC,
∴AM=CN,
在△MAB≌△NDC,

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ= AN,
∴MQ= BM,
∴MP= BM,
∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形,
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM= AD,CN= BC,
∴AM=CN,
在△MAB≌△NDC,

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ= AN,
∴MQ= BM,
∴MP= BM,
∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形,
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM= AD,CN= BC,
∴AM=CN,
在△MAB≌△NDC,

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ= AN,
∴MQ= BM,
∴MP= BM,
∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形,
∵AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD.BC的中点,
∴AM= AD,CN= BC,
∴AM=CN,
在△MAB≌△NDC,

∴△MAB≌△NDC;
(2)四边形MPNQ是菱形,
理由如下:连接AN,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵DM=BN,DQ=BP,∠MDQ=∠NBP,
∴△MQD≌△NPB.
∴四边形MPNQ是平行四边形,
∵M是AB中点,Q是DN中点,
∴MQ= AN,
∴MQ= BM,
∴MP= BM,
∴MP=MQ,
∴四边形MQNP是菱形.

(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;
(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=CN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.
看了 如图,在矩形ABCD中,M、...的网友还看了以下:

【问题1】(5分)(1)在事件1中,应由______最终批准屏蔽室建设分包单位。A.甲单位 B.乙单  2020-05-26 …

双绞线可以制作成直连线和交叉线两种形式。在图4-1中,路由器与交换机相连,使用的双绞线应制作成__  2020-05-26 …

图3-1中,路由器除了实现内部局域网与Internet之间数据路由的功能之外,还具有的功能为(1),  2020-05-26 …

如图,由火柴棒拼出的一列图形中,第n个图形由n个正方形组成,请问:(1)第4个图形中火柴棒有几根?  2020-06-19 …

如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和  2020-07-12 …

一张正方形纸,先由甲划去正方形面积的1/3,再由乙划去剩下面积的1/3;接着再由甲划去剩下面一张正  2020-07-14 …

如图,由全等三角形拼出的一系列图形中,第n个图形由n+1个全等三角形拼成,则第4个图形中平行四边形  2020-07-31 …

如图,由全等三角形拼出的一系列图形中,14.如图所示,由全等三角形拼出的一系列图形中,地n个图形由  2020-08-01 …

分析下列酶促反应的曲线(注意:酶的数量一定),回答下列问题:(1)在图1中,自变量是;B点对应的温度  2020-12-19 …

如图所示三幅图都与美国的历史有关,仔细观察三幅图片并回答相关问题。(1)图1中自由女神的右手高举着火  2020-12-19 …