早教吧作业答案频道 -->其他-->
(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、BE相交于点P,求证:BE=AD.(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边
题目详情
(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、BE相交于点P,求证:BE=AD.
(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、
等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是______(只填序号即可)
①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;
(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.
(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、

①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;
(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.
▼优质解答
答案和解析
(1)证明:∵△ABC和△CDE都是等边三角形,
∴BC=AC,CE=CD,∠ACB=∠DCE=60°,
∴∠BCE=∠ACD,
∵在△BCE和△ACD中
∴△BCE≌△ACD(SAS)
∴BE=AD;
(2)①②③都正确,
理由是:∵△ABC和△CDE都是等边三角形,
∴BC=AC,CE=CD,∠ACB=∠DCE=60°,
∴∠BCE=∠ACD,
在△BCE和△ACD中
∴△BCE≌△ACD(SAS)
∴BE=AD,∠BEC=∠ADC,∴②正确;
同理△FDC≌△BDE,
∴BE=CF,
∴BE=AD=CF,∴①正确;
∵△BCE≌△ACD,
∴∠CEP=∠CDA,
∵∠CED=∠CDE=60°,
∴∠DEP+∠CEP=∠CED=60°=∠CDP+∠DEP,
∴∠DPE=180°-60°-60°=60°,
同理∠EPC=∠CPA=60°,即∠DPE=∠EPC=∠CPA=60°,∴③正确;
故答案为:①②③;
(3)证明:在PE上截取PM=PC,连接CM,

由(1)可知,△BCE≌△ACD(SAS)
∴∠1=∠2
设CD与BE交于点G,在△CGE和△PGD中,
∵∠1=∠2,∠CGE=∠PGD,
∴∠DPG=∠ECG=60°,
同理∠CPE=60°,
∴△CPM是等边三角形,
∴CP=CM,∠PMC=60°.
∴∠CPD=∠CME=120°.
∵∠1=∠2,
∴△CPD≌△CME(AAS),
∴PD=ME,
∴BE=PB+PM+ME=PB+PC+PD,
即PB+PC+PD=BE.
∴BC=AC,CE=CD,∠ACB=∠DCE=60°,
∴∠BCE=∠ACD,
∵在△BCE和△ACD中
|
∴△BCE≌△ACD(SAS)
∴BE=AD;
(2)①②③都正确,
理由是:∵△ABC和△CDE都是等边三角形,
∴BC=AC,CE=CD,∠ACB=∠DCE=60°,
∴∠BCE=∠ACD,
在△BCE和△ACD中
|
∴△BCE≌△ACD(SAS)
∴BE=AD,∠BEC=∠ADC,∴②正确;
同理△FDC≌△BDE,
∴BE=CF,
∴BE=AD=CF,∴①正确;
∵△BCE≌△ACD,
∴∠CEP=∠CDA,
∵∠CED=∠CDE=60°,
∴∠DEP+∠CEP=∠CED=60°=∠CDP+∠DEP,
∴∠DPE=180°-60°-60°=60°,
同理∠EPC=∠CPA=60°,即∠DPE=∠EPC=∠CPA=60°,∴③正确;
故答案为:①②③;
(3)证明:在PE上截取PM=PC,连接CM,

由(1)可知,△BCE≌△ACD(SAS)
∴∠1=∠2
设CD与BE交于点G,在△CGE和△PGD中,
∵∠1=∠2,∠CGE=∠PGD,
∴∠DPG=∠ECG=60°,
同理∠CPE=60°,
∴△CPM是等边三角形,
∴CP=CM,∠PMC=60°.
∴∠CPD=∠CME=120°.
∵∠1=∠2,
∴△CPD≌△CME(AAS),
∴PD=ME,
∴BE=PB+PM+ME=PB+PC+PD,
即PB+PC+PD=BE.
看了 (1)如图1,△ABC和△C...的网友还看了以下:
如图,在△ABC中,AB=AC=3,∠BAC=120°,以点A为圆心,1为半径作圆弧,分别交AB, 2020-06-14 …
(2014•抚顺)如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、AD长为半 2020-07-10 …
急如图所示,已知矩形ABCD的边AB=3cmBC=4cm(1)以点A为圆心4cm为半径坐圆A则点B 2020-07-20 …
已知AB为半圆O的直径,点P为直径AB上的任意一点.以点A为圆心,AP为半径作⊙A,⊙A与半圆O相 2020-07-22 …
在Rt△ABC中,∠ACB=90°,AC=6,AB=10,以点C为圆心作圆,设圆的半径为r(1)要 2020-07-26 …
这两个圆有可能内切吗?已知直角三角形ABC中,角CAB=30度,BC=5.过点A作AE⊥AB,且A 2020-07-31 …
我是不是用尺规作图法做出了圆内接正七边形?第一步:作一圆O,以其半径为长在此圆边上依次截出正六边形 2020-08-02 …
如图,P是O外一点,OP交O于点A,OA=AP.甲、乙两人想作一条通过点P与O相切的直线,其作法如下 2020-11-02 …
已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c.①以点B为圆心,c为半径圆弧;②连 2020-11-06 …
如图,给出线段a、h,作等腰三角形ABC,使AB=AC=a,BC边上的高AD=h.张红的作法是:(1 2020-11-06 …