早教吧作业答案频道 -->数学-->
已知正方体ABEF和ACGH在三角形BAC的外侧,点M是BC边的中点.求证FH等于2AM
题目详情
已知正方体ABEF和ACGH在三角形BAC的外侧,点M是BC边的中点.求证FH等于2AM
▼优质解答
答案和解析
证明:延长AM至D,使MD=AM,连接BD
因MB=MC,∠BMD=∠CMA
所以△BMD≌△CMA
所以BD=AC,
∠DBC=∠ACB,
又正方形AFEB和正方形ACGH
则AH=AC=BD,AF=AB,∠FAB=∠HAC=90°
所以,∠FAH+∠BAC=180°
又∠BAC+∠ACB+∠ABC=180°
所以∠FAH=∠ACB+∠ABC
即∠FAH=∠DBC+∠ABC=∠ABC
所以△AFH≌△BAD
所以FH=AD
又AD=2AM
则FH=2AM
因MB=MC,∠BMD=∠CMA
所以△BMD≌△CMA
所以BD=AC,
∠DBC=∠ACB,
又正方形AFEB和正方形ACGH
则AH=AC=BD,AF=AB,∠FAB=∠HAC=90°
所以,∠FAH+∠BAC=180°
又∠BAC+∠ACB+∠ABC=180°
所以∠FAH=∠ACB+∠ABC
即∠FAH=∠DBC+∠ABC=∠ABC
所以△AFH≌△BAD
所以FH=AD
又AD=2AM
则FH=2AM
看了 已知正方体ABEF和ACGH...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
用正弦定理证明:如果三角形ABC中,角A的外角平分线与边BC的延长线相交于点D则BD/DC=AB/ 2020-04-11 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
如图.点E,F在BC上,BE等于CF,AB等于DC,角B等于角C.求证角A等于角C.根据概念(S如 2020-06-27 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
利用反证法证明“直角三角形至少有一个锐角不小于45∘”,应先假设()。A.直角三角形的每个锐角都小 2020-08-01 …
等腰三角形底角三等分交底边中线证角相等在等腰三角形ABC中,D是底边BC的中点,E,F是线段AD上 2020-08-02 …
三角形ABC中,DAE为角A的外角平分线,BD垂直DE于D,CE垂直DE于E,BE和CD交于F,求 2020-08-03 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …