早教吧作业答案频道 -->数学-->
RT△ABC中,∠A=90度,AD⊥BC,△ABE和△ACF都是等边三角形,若AD:BC=12:25,AB>AC,求S△DBE:S△DAF
题目详情
RT△ABC中,∠A=90度,AD⊥BC,△ABE和△ACF都是等边三角形,若AD:BC=12:25,AB>AC,求S△DBE:S△DAF
▼优质解答
答案和解析
答案是16^2:9^2
为了讲清楚,步骤比较多,请耐心看完,主要的东西并不多,就是证明相似,再求相似比.
请适当参考,删减
(1)首先我们来证明△DBE∽△DAF
由已知条件很容易得到RT△ADB∽RT△CDA
那么有AB:AC=BD:AD,∠ABD=∠CAD
又因为△ABE和△ACF都是等边三角形,所以BE=AB,AF=AC,∠ABE=∠CAF=60°
所以BE:AF=BD:AD,∠DBE=∠ABD+∠ABE=∠CAD+∠CAF=∠DAF
于是△DBE∽△DAF
那么它们的相似比为BE:AF
(2)接下来求BE:AF
BE:AF=AB:AC
所以我们来求AB:AC
由(1)可知RT△ADB∽RT△CDA
那么就有AD:CD=BD:AD即BD*CD=AD^2=12^2①
又因为BD+CD=BC=25所以BD=25-CD②
将②代入①得到(25-CD)*CD=12^2 ③
解方程③得到CD=16或9
若CD=16,则BD=9
若CD=9,则BD=16
到底是哪种情况呢?
由题可知AB>AC那么AB:AC>1
再次利用RT△ADB∽RT△CDA
那么AD:CD=BD:AD=AB:AC>1④
AD>CD,BD>AD即BD>AD>AC
因此只能是BD=16,CD=9
代入④有AB:AC=BD:AD=16:9
BE:AF=16:9
相似三角形面积比为边长比的平方
S△DBE:S△DAF =16^2:9^2
为了讲清楚,步骤比较多,请耐心看完,主要的东西并不多,就是证明相似,再求相似比.
请适当参考,删减
(1)首先我们来证明△DBE∽△DAF
由已知条件很容易得到RT△ADB∽RT△CDA
那么有AB:AC=BD:AD,∠ABD=∠CAD
又因为△ABE和△ACF都是等边三角形,所以BE=AB,AF=AC,∠ABE=∠CAF=60°
所以BE:AF=BD:AD,∠DBE=∠ABD+∠ABE=∠CAD+∠CAF=∠DAF
于是△DBE∽△DAF
那么它们的相似比为BE:AF
(2)接下来求BE:AF
BE:AF=AB:AC
所以我们来求AB:AC
由(1)可知RT△ADB∽RT△CDA
那么就有AD:CD=BD:AD即BD*CD=AD^2=12^2①
又因为BD+CD=BC=25所以BD=25-CD②
将②代入①得到(25-CD)*CD=12^2 ③
解方程③得到CD=16或9
若CD=16,则BD=9
若CD=9,则BD=16
到底是哪种情况呢?
由题可知AB>AC那么AB:AC>1
再次利用RT△ADB∽RT△CDA
那么AD:CD=BD:AD=AB:AC>1④
AD>CD,BD>AD即BD>AD>AC
因此只能是BD=16,CD=9
代入④有AB:AC=BD:AD=16:9
BE:AF=16:9
相似三角形面积比为边长比的平方
S△DBE:S△DAF =16^2:9^2
看了 RT△ABC中,∠A=90度...的网友还看了以下:
如图,△ABC中,角acb=90°,以ac为边向三角形外作正方形如图,△abc中,角acb=90° 2020-04-26 …
关于空间的平行直线和异面直线的问题急1在空间四边形ABCD中,AD=BC=2,E,F分别为AB,C 2020-04-27 …
(2009•承德二模)在△ABC中,AB=AC,AC⊥BA,M为BC边中点,一等腰直角三角尺的直角 2020-06-12 …
如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于 2020-06-27 …
如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上, 2020-07-09 …
在ABC中,AB=AC,边BC的中点为D.所作的等边DEF的边EF与BC平行吗三角形ABC,AB= 2020-07-22 …
如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,D 2020-07-27 …
已知Rt△ABC,∠B=90°,直线EF分别于两直角边AB、AC交于E、F两点,且EF∥AC.P是 2020-07-30 …
如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F 2020-11-03 …
如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F 2020-11-03 …