早教吧作业答案频道 -->数学-->
如图所示,CD是Rt△ABC斜边AB上的高,AF为角平分线,AF交BC于F,交CD于E,过E作EG∥AB,与BC交于G,过F向AB作垂线,垂足为H.求证:(1)CF=BG;(2)四边形CEHF是菱形.
题目详情
如图所示,CD是Rt△ABC斜边AB上的高,AF为角平分线,AF交BC于F,交CD于E,过E作EG∥AB,与BC交于G,过F向AB作垂线,垂足为H.
求证:(1)CF=BG;
(2)四边形CEHF是菱形.

求证:(1)CF=BG;
(2)四边形CEHF是菱形.

▼优质解答
答案和解析
(1)由AF平分∠CAB,CD⊥AB,FH⊥AB,可推出∠CFE=∠CEF,从而证得CF=CE.
由FH⊥AB,FC⊥AC,AF平分∠BAC,可得CF=FH,
∴CE=FH,
又∵EG∥AB,
∴∠CGE=∠B,∠CEG=∠FHB.可推得△GEC≌△BHF.
推出CG=FB.
∴CF=BG.
(2)由(1)证明可知CE
FH.
∴CFHE为平行四边形,
又∵CF=FH,
∴CFHE是菱形.
由FH⊥AB,FC⊥AC,AF平分∠BAC,可得CF=FH,
∴CE=FH,
又∵EG∥AB,
∴∠CGE=∠B,∠CEG=∠FHB.可推得△GEC≌△BHF.
推出CG=FB.
∴CF=BG.
(2)由(1)证明可知CE
| ||
. |
∴CFHE为平行四边形,
又∵CF=FH,
∴CFHE是菱形.
看了 如图所示,CD是Rt△ABC...的网友还看了以下:
x^2-y^2=a^2右准线交实轴于P,过P直线交双曲线A、B,过右焦点F引直线垂直AB交双曲线于 2020-04-08 …
设f(x)在x=a处可导,则lim(f(a+nh)-f(a-mh))/h=?(h趋近于0)RT(m 2020-05-20 …
已知函数f(x)=x^3+x-16.直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切 2020-05-20 …
已知函数f(x)=ax^3+bx²,曲线y=f(x)过点P(-1,2),且在点P处的切线恰好与直线 2020-05-21 …
已知定点F(0,1),定直线l:y=-1,动圆M过点F,且与直线l相切.(Ⅰ)求动圆M的圆心轨迹C 2020-07-31 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F(3,0),过点F的直线交椭 2020-07-31 …
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F,离心率是1/2,过F作直线l交椭 2020-08-01 …
数学圆锥曲线过双曲线的左焦点F引圆x2+y2=a2的切线,切点为A,延长FA交双曲线右支于过双曲线 2020-08-02 …
已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l.已知抛物 2020-08-03 …
两道高一数学题1.一束光线过点P(2,3)射到直线X+Y+1=0后,反射后经过点(1,1)点,求入射 2020-12-07 …