已知抛物线y2=4x的准线与双曲线x2a2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为()A.6B.62C.3D.2
2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2x2 |
x2 | x2x22a2 |
a2 | a2a22y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 22=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2
B.
C.
D. 2 | 6 |
| 6 |
C.
D. 2 |
| | 6 |
| 6 | 2 |
2 |
D. 2 | 3 |
| 3 |
答案和解析
依题意知抛物线的准线x=-1.代入双曲线方程得
y=±
.
不妨设A(-1,),
∵△FAB是等腰直角三角形,
∴=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a.
不妨设A(-1,
),
∵△FAB是等腰直角三角形,
∴=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a),
∵△FAB是等腰直角三角形,
∴
=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a=2,解得:a=
,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 5 |
| 5 | 5
5 |
5 | 5,
∴c
22=a
22+b
22=
+1=,
∴e=
则双曲线的离心率为:.
故选A. 1 |
1 | 1
5 |
5 | 5+1=
,
∴e=
则双曲线的离心率为:.
故选A. 6 |
6 | 6
5 |
5 | 5,
∴e=
则双曲线的离心率为:.
故选A. | 6 |
| 6 | 6
则双曲线的离心率为:
.
故选A. | 6 |
| 6 | 6.
故选A.
做一道导数微积分简单题y=4x/[根号下(x^2+15)]的f'(x)和f''(x) 2020-06-02 …
如果f(x)-f(-x)/x存在那么f(0)的导数存在如果limx趋近于0f(x)-f(-x)/x 2020-06-10 …
已知抛物线的焦点F与双曲线的一个焦点相同,且F到双曲线的右顶点的距离等于1,已知抛物线y^2=8x 2020-07-13 …
已知抛物线C:y^2=4x的焦点为F,直线L经过点F且与抛物线C相交于点A,B.已知抛物线C:y^ 2020-07-29 …
文数:过抛物线y^2=2px的焦点F作倾斜角为135°的直线,交抛物线与A,B两点过抛物线y^2= 2020-08-01 …
数学类可能是ROLL定理的内容f(x)在0,1上连续,且可导.f(1)=2倍的f(x)从0到1/2的 2020-11-02 …
如图为枝芽与一段枝条的结构图.(1)图2中的[g]是由图1中的发育而来的.(2)图2中的[h]是由图 2020-11-05 …
,1,2与(-1,0的f(x)表达式为什么是那么多,不可以令x€(0,1),则求出在1,2f(x)= 2020-11-18 …
(1/2)设抛物线C:x^2=2py的焦点为F,准线为l,A为C上一点,已知F为圆心,FA为半径的圆 2020-11-27 …
若f(x)在(c,d)区间内存在二阶导数,a,b∈(c,d),且f'(a)=0.证明:在(a,b)内 2020-12-28 …