早教吧作业答案频道 -->数学-->
1,化简f(x)=cos[(6k+1)/3·π+2x]+cos[(6k-1)/3`π-2x]+2*根号三sin(π/3+2x)(x是实数集,k是整数集),并求函数f(x)的值域和最小正周期.2.已知函数f(x)=-x^3+3x^2+9x+a(1)求f(x)的单调递减区间;(2
题目详情
1,化简 f(x)=cos[(6k+1)/3·π+2x]+cos[(6k-1)/3`π-2x]+2*根号三sin(π/3+2x) (x是实数集,k是整数集),并求函数f(x)的值域和最小正周期.
2.已知函数f(x)=-x^3+3x^2+9x+a
(1)求f(x)的单调递减区间;
(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
2.已知函数f(x)=-x^3+3x^2+9x+a
(1)求f(x)的单调递减区间;
(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
▼优质解答
答案和解析
f(x)=cos[(6k+1)/3·π+2x]+cos[(6k-1)/3`π-2x]+2*根号三sin(π/3+2x)
=cos(2kπ+2x+π/3)+cos(2kπ-(2x+π/3))+2√3sin(2x+π/3)
=2cos(2x+π/3)+2√3sin(2x+π/3)
=4sin(2x+π/3+π/6)
=4sin(2x+π/2)
=4cos2x
故最小正周期是T=π, 值域是[-4,4]
2. f(x)=-x^3+3x^2+9x+a
f'(x)=-3x^2+6x+9=-3(x-3)(x+1)
令 f'(x)<0得:x3
故 f(x) 减区间是(-无穷,-1],[3,+无穷)
(2)由(1)知:f(x)在[-2,-1]上减,在[-1,2]上增,
f(-2)=a+2, f(2)=22+a
故最大值是f(2)=22+a=20, a=-2
f(x)=-x^3+3x^2+9x-2
在[-2,2]上的最小值是f(-1)=-7
=cos(2kπ+2x+π/3)+cos(2kπ-(2x+π/3))+2√3sin(2x+π/3)
=2cos(2x+π/3)+2√3sin(2x+π/3)
=4sin(2x+π/3+π/6)
=4sin(2x+π/2)
=4cos2x
故最小正周期是T=π, 值域是[-4,4]
2. f(x)=-x^3+3x^2+9x+a
f'(x)=-3x^2+6x+9=-3(x-3)(x+1)
令 f'(x)<0得:x3
故 f(x) 减区间是(-无穷,-1],[3,+无穷)
(2)由(1)知:f(x)在[-2,-1]上减,在[-1,2]上增,
f(-2)=a+2, f(2)=22+a
故最大值是f(2)=22+a=20, a=-2
f(x)=-x^3+3x^2+9x-2
在[-2,2]上的最小值是f(-1)=-7
看了 1,化简f(x)=cos[(...的网友还看了以下:
syntheticdivisionfindtheremainingroots2x^4-9x^3+2 2020-04-25 …
观察右边一列单项式:X,-3X^2,9X,-27X,...观察右边一列单项式:X,-3X^2,9X 2020-05-14 …
4x^n+3-12x^n+2+9x^n+1 2020-06-03 …
将下列各式分解因式4x^n+3-12x^n+2+9x^n+1 2020-06-03 …
1,化简f(x)=cos[(6k+1)/3·π+2x]+cos[(6k-1)/3`π-2x]+2* 2020-06-05 …
分解公因式,4x(n+3)-12x(n+2)+9x(n+1)注:()里的是平方.(n+3).(n+ 2020-08-01 …
平方差公式已知x^2-y^2=24,x+y=4,求(x-y)^2的值1、已知x^2-y^2=24, 2020-08-03 …
9(2x-1.2)=9x+8.1的解急 2020-10-31 …
既有方程,又有不等式,叫做什么组?如{3x-1=2,9x-7=1}是方程组,而{5+x>8,7x-9 2020-11-04 …
已知a-a^-1=5求a^2+a^-2的值1.已知a-a^-1=5求a^2+a^-2的值2.若3x^ 2020-11-27 …