早教吧作业答案频道 -->数学-->
如图,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
题目详情
如图,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.


▼优质解答
答案和解析
HE=HF.
理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.
∵四边形ABME是矩形,
∴∠BAE=90°,
∴∠BAG+∠EAP=90°,
又∵AG⊥BC,
∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,
∴△ABG∽△EAP,
∴AG:EP=AB:EA.
同理△ACG∽△FAQ,
∴AG:FQ=AC:FA.
∵AB=k•AE,AC=k•AF,
∴AB:EA=AC:FA=k,
∴AG:EP=AG:FQ.
∴EP=FQ.
在Rt△EPH和Rt△FQH中,
,
∴Rt△EPH≌Rt△FQH(AAS).
∴HE=HF.

∵四边形ABME是矩形,
∴∠BAE=90°,
∴∠BAG+∠EAP=90°,
又∵AG⊥BC,
∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,
∴△ABG∽△EAP,
∴AG:EP=AB:EA.
同理△ACG∽△FAQ,
∴AG:FQ=AC:FA.
∵AB=k•AE,AC=k•AF,
∴AB:EA=AC:FA=k,
∴AG:EP=AG:FQ.
∴EP=FQ.
在Rt△EPH和Rt△FQH中,
|
∴Rt△EPH≌Rt△FQH(AAS).
∴HE=HF.
看了 如图,△ABC中,AG⊥BC...的网友还看了以下:
已知三棱锥S-ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.(1)求证:BC 2020-07-08 …
从1907年起,密立根就开始测量金属的遏止电压CU(即图1所示的电路中电流表○G的读数减小到零时加 2020-07-20 …
三棱锥P-ABC中,顶点P在平面ABC上的射影O为ABC重心,A点三棱锥P-ABC中,顶点P在平面 2020-07-30 …
若三棱锥S-ABC的顶点S在底面上的射影H在△ABC的内部,且是△ABC的垂心,则()A.三条侧棱 2020-07-30 …
2.地球内部三个圈层中,地幔位于()A.地表到A之间B.A到B之间C.B到H之间D.A到H之间 2020-11-21 …
如图所示,小球自高为H的A点由静止开始沿光滑曲面下滑,到曲面底B点飞离曲面,B点处曲面的切线沿水平方 2020-12-05 …
读地震波波速与地球内部构造图,回答1-2题:地球内部三个圈层中,地幔位于()A.地表到A之间B.A到 2020-12-09 …
读地震波波速与地球内部构造图,回答12-13题地球内部三个圈层中,地幔位于()A.地表到A之间B.A 2020-12-09 …
在单缝衍射实验中,下列说法中正确的是()A.换用波长较长的光照射,衍射条纹间距变窄B.换用波长较长的 2020-12-19 …
如图所示,小球自高为H的A点由静止开始沿光滑曲面下滑,到曲面底B点飞离曲面,B点处曲面的切线沿水平方 2021-01-14 …