早教吧作业答案频道 -->数学-->
如图,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
题目详情
如图,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.


▼优质解答
答案和解析
HE=HF.
理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.
∵四边形ABME是矩形,
∴∠BAE=90°,
∴∠BAG+∠EAP=90°,
又∵AG⊥BC,
∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,
∴△ABG∽△EAP,
∴AG:EP=AB:EA.
同理△ACG∽△FAQ,
∴AG:FQ=AC:FA.
∵AB=k•AE,AC=k•AF,
∴AB:EA=AC:FA=k,
∴AG:EP=AG:FQ.
∴EP=FQ.
在Rt△EPH和Rt△FQH中,
,
∴Rt△EPH≌Rt△FQH(AAS).
∴HE=HF.

∵四边形ABME是矩形,
∴∠BAE=90°,
∴∠BAG+∠EAP=90°,
又∵AG⊥BC,
∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,
∴△ABG∽△EAP,
∴AG:EP=AB:EA.
同理△ACG∽△FAQ,
∴AG:FQ=AC:FA.
∵AB=k•AE,AC=k•AF,
∴AB:EA=AC:FA=k,
∴AG:EP=AG:FQ.
∴EP=FQ.
在Rt△EPH和Rt△FQH中,
|
∴Rt△EPH≌Rt△FQH(AAS).
∴HE=HF.
看了 如图,△ABC中,AG⊥BC...的网友还看了以下:
如图,已知Rt△ABC的斜边AB=8cm,AC=4cm.(1)以点C为圆心作圆,当半径为多长时,直线 2020-03-31 …
已知Rt△ABC的斜边AB=4cm,AC=2cm.(1)以C为圆心作圆,当半径为多长时,AB与C相 2020-05-13 …
跪求C、G开头的词组求一个英语词组,分别以C、G开头的词组,有寓意,励志或爱情或名言都可以! 2020-05-19 …
设a.b.c.都是正数,且有a^2+b^2-c^2+2ab=0,那么分别以a.b.c为长度的三条设 2020-07-30 …
角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D 2020-11-06 …
有已知两点A和B,通过后方交会后得出两点C和D,分别以C、D为测站点,对相同目标观测,可结果为什么不 2020-11-07 …
12、如图,在长方形ABCD中,AB=2cm,AD=4cm,E、F分别为AD、BC的中点,分别以C, 2020-11-26 …
“我们可以得到A和B分别与C、D、E之间的关系”这句话用英语怎么表达“我们可以得到A和B分别与C、D 2020-12-25 …
请分别以C、T、W、Z开头的单词(例如:迷人的,宽容的,温暖的,热情的这一类的)谢谢哈. 2021-02-03 …
求一个分别以c、x、f开头的3个英文单词的网名 2021-02-05 …