早教吧作业答案频道 -->数学-->
已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c∈R.且满足a>b>c,f(1)=0.(Ⅰ)证明:当a=3、b=2时函数f(x)与g(x)的图象交于不同的两点A,B.(Ⅱ)若函数F(x)=f(x
题目详情
已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c∈R.且满足a>b>c,f(1)=0.
(Ⅰ)证明:当a=3、b=2时函数f(x)与g(x)的图象交于不同的两点A,B.
(Ⅱ)若函数F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值为21,试求a,b的值.
(Ⅰ)证明:当a=3、b=2时函数f(x)与g(x)的图象交于不同的两点A,B.
(Ⅱ)若函数F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值为21,试求a,b的值.
▼优质解答
答案和解析
证明:(Ⅰ)由已知3x2+2x+c=-2x
即3x2+4x+c=0.且a+b+c=0,所以c=-5(2分)
△=4b2-4ac>0
因此函数f(x)与g(x)图象交于不同的两点A、B.(6分)
(Ⅱ)由题意知,F(x)=ax2+2bx+c
∴函数F(x)的图象的对称轴方程为∵x=-
又∵a+b+c=0
∴x=
=1+
<1(8分)
又a>0
∴F(x)在[2,3]单增
∴
(10分)
即
∴
(12分)
即3x2+4x+c=0.且a+b+c=0,所以c=-5(2分)
△=4b2-4ac>0
因此函数f(x)与g(x)图象交于不同的两点A、B.(6分)
(Ⅱ)由题意知,F(x)=ax2+2bx+c
∴函数F(x)的图象的对称轴方程为∵x=-
b |
a |
又∵a+b+c=0
∴x=
a+c |
a |
c |
a |
又a>0
∴F(x)在[2,3]单增
∴
|
即
|
∴
|
看了 已知二次函数f(x)=ax2...的网友还看了以下:
用符号f和g分别表示一种运算,他们对一些数的运算结果如下(1) f(1)=2 f(2)=-3 f( 2020-05-16 …
用符号"f"和"g"分别表示一种运算,它们对一些数的运算结果如下:(1)f(1)=2,f(2)=3 2020-05-16 …
已知集合A={5,6,7,8},设f,g都是由A到A的映射,其对应法则分别如表1和表2所示:则与f 2020-07-13 …
高等数学:设函数f(x)和g(x)在(-无穷,+无穷)内有定义,f(x)为连续函数,且f(x)≠0 2020-07-21 …
已知函数f(x)=(x^1/3-x^-1/3)/5,g(x)=(x^1/3+x1/3)/5.分别计 2020-07-21 …
直升机沿竖直方向匀速升空时,在竖直方向上受到升力F、重力G和阻力f,下面关于这三个力的关系式正确的 2020-07-22 …
设函数f,g,h∈R,且有f(x)=x+3,g(x)=2x+1,h(x)=x/2,求出f○g,g○ 2020-07-26 …
设映射F:X→Y,若存在一个映射G:X→Y,使G.F=Ix,F.G=Iy,其中Ix和Iy分别是X和 2020-07-30 …
谁能给解释下复合函数连续性的问题?f(x)在x=x0处连续.g(x)在这点不连续.请问f(x)+g 2020-08-02 …
符号f和g分别表示一种符号利用以上规律计算g(1/2008)-f(2008)=多少f(1)=0,f( 2020-11-24 …