早教吧作业答案频道 -->数学-->
设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)
题目详情
设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)
▼优质解答
答案和解析
1、令x=y=0,
f(0+0)=f(0)+f(0),
即f(0)=2f(0)得f(0)=0
2、令x=-y,即y=-x代入得
f(x-x)=f(x)+f(-x),
即f(x)=f(x)+f(-x)移项得
f(-x)=-f(x)为奇函数
3、因为f(1/3)=1,令x=y=1/3代入得
f(1/3+1/3)=f(1/3)+f(1/3)=2,即f(2/3)=2 (用来替代不等式中的2)
即所求不等式为发f(x)+f(2+x)<f(2/3)……①
设x1、x2大于0,且0<x1<x2,则x2/x1>0,所以f(x2/x1)<0
所以f(x2)-f(x1)=f[(x1*(x1/x2)]-f(x1)=f(x1)+f(x2/x1)-f(x1)=f(x2/x1)<0
即f(x1)>f(x2),所以f(x)在(0,+∞)上为减函数
再根据f(x+y)=f(x)+f(y)的逆应用,
把f(x)+f(2+x)转化为f(x+x+2)=f(2x+2)
所以f(x)+f(2+x)<2就可以转换成f(2x+2)<f(2/3)
根据单调性把①中的f脱掉,得2x+2>2/3且x>0,2+x>0(因为x的定义域要落在
x>0才符合题意)
综上解得(0,+∞).
f(0+0)=f(0)+f(0),
即f(0)=2f(0)得f(0)=0
2、令x=-y,即y=-x代入得
f(x-x)=f(x)+f(-x),
即f(x)=f(x)+f(-x)移项得
f(-x)=-f(x)为奇函数
3、因为f(1/3)=1,令x=y=1/3代入得
f(1/3+1/3)=f(1/3)+f(1/3)=2,即f(2/3)=2 (用来替代不等式中的2)
即所求不等式为发f(x)+f(2+x)<f(2/3)……①
设x1、x2大于0,且0<x1<x2,则x2/x1>0,所以f(x2/x1)<0
所以f(x2)-f(x1)=f[(x1*(x1/x2)]-f(x1)=f(x1)+f(x2/x1)-f(x1)=f(x2/x1)<0
即f(x1)>f(x2),所以f(x)在(0,+∞)上为减函数
再根据f(x+y)=f(x)+f(y)的逆应用,
把f(x)+f(2+x)转化为f(x+x+2)=f(2x+2)
所以f(x)+f(2+x)<2就可以转换成f(2x+2)<f(2/3)
根据单调性把①中的f脱掉,得2x+2>2/3且x>0,2+x>0(因为x的定义域要落在
x>0才符合题意)
综上解得(0,+∞).
看了 设函数y=f(x)是定义域在...的网友还看了以下:
把xmolCO2通入ymolCa(OH)2的澄清石灰水中充分反应,下列叙述中错误的是()A.当x≤ 2020-05-13 …
二元函数微分学问题:设函数f(x)在[a,b]连续可导,定义g(x,y)=[f(x)—f(y)]/ 2020-06-06 …
如何证明均值定理?均值定理:已知x,y∈R+,x+y=S,x·y=P(1)如果P是定值,那么当且仅 2020-06-16 …
x+y大于等于2倍根号下xy当且仅当x=y时等号成立,是不是说xy的最小值就是2x或2y已知x,y 2020-06-16 …
求一个f(x,y)的表达式其中f(0,y)=y;f(x,0)=x;f(x,y)对x的偏导大于0;f 2020-07-30 …
a,b,x,y均是正数,a/x+b/y=1,求x+y的最小值?x+y>=2倍的根号下xy,当x=y 2020-08-03 …
若x>0,y>0,且x+y=s,xy=p,则下列命题中正确的是()A.当且仅当x=y时s有最小值2p 2020-11-01 …
阅读材料:用配方法求最值.已知x,y为非负实数,∵x+y-2xy=(x)2+(y)2-2x•y=(x 2020-12-27 …
已知x,,x+y=p,xy=s,有下列命题其中正确命题的序号是A如果s是定值,那么当且仅当x=y时p 2020-12-31 …
已知x,y∈R+,2x+y=1,求1/x+1/y的最小值解法错误原因恳请解释为什么错误,∵x,y∈R 2020-12-31 …