早教吧作业答案频道 -->数学-->
已知函数fx=x2+x-a的绝对值+1(a∈R)1判断函数fx的奇偶性2求函数fx的最小值
题目详情
已知函数fx=x2+x-a的绝对值+1(a∈R) 1判断函数fx的奇偶性 2求函数fx的最小值
▼优质解答
答案和解析
(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),
此时,f(x)为偶函数.
当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,
f(a)≠f(-a),f(a)≠-f(-a),此时,f(x)为非奇非偶函数.
(2)当x≤a时,
f(x)=x2-x+a+1=(x- 1\x092 )2+a+ 3\x094
∵a≤ 1\x092 ,故函数f(x)在(-∞,a]上单调递减.
从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1
当x≥a时,函数f(x)=x2+x-a+1=(x+ 1\x092 )2-a+ 3\x094 ,
∵a≥- 1\x092
故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)
=a2+1.
综上得,当- 1\x092 ≤a≤ 1\x092 时,函数f(x)的最小值为a2+1.
此时,f(x)为偶函数.
当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,
f(a)≠f(-a),f(a)≠-f(-a),此时,f(x)为非奇非偶函数.
(2)当x≤a时,
f(x)=x2-x+a+1=(x- 1\x092 )2+a+ 3\x094
∵a≤ 1\x092 ,故函数f(x)在(-∞,a]上单调递减.
从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1
当x≥a时,函数f(x)=x2+x-a+1=(x+ 1\x092 )2-a+ 3\x094 ,
∵a≥- 1\x092
故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)
=a2+1.
综上得,当- 1\x092 ≤a≤ 1\x092 时,函数f(x)的最小值为a2+1.
看了 已知函数fx=x2+x-a的...的网友还看了以下:
若函数f(x)=cos^2x+1/2(x属于R)则f(X)是若函数f(x)=cos^2x+1/2( 2020-04-12 …
用这些英文字母拼词这些英文字母打乱了顺序.一个题目一个词.第一题:r,c,t,a,e,s,r第二题 2020-05-16 …
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则().A.f(x)不是周期函数B 2020-06-03 …
定义在R上的函数f(x)满足:如果对任意x1,x2∈R,都有f[(x1+x2)/2]≤1/2[f( 2020-07-14 …
英语单词填空1.时间状语:d-r-n-2.场所:b-s-s-o-f-r--e-a-t-e-t3.教 2020-07-14 …
定义在R上的函数f(x)满足:如果对任意x1,x2∈R,都有f()≤[f(x1)+f(x2)],则 2020-07-29 …
已知函数f(x)=x-a/x-2lnx,a∈R(1)讨论函数f(x)的单调性(已知函数f(x)=x 2020-08-01 …
若函数y=f(x)(x∈R)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)是周期函 2020-08-02 …
设a是实数,函数f(x)=4x+|2x-a|(x∈R).(1)求证:函数f(x)不是奇函数;(2)当 2020-11-01 …
已知f(x)在R上是增函已知f(x)在R上是增函数,a,b∈R,且a+b≤0,则有[]A、f(a)+ 2020-12-08 …