早教吧作业答案频道 -->数学-->
设a,b,c∈R,且c≠0,证明:(a+b)^2
题目详情
设a,b,c∈R,且c≠0,证明:(a+b)^2
▼优质解答
答案和解析
(1)(a+b)^2=a^2+b^2+2ab
右边展开
a^2+b^2+b^2/c^2+a^2c^2
即要证明2ab<=b^2/c^2+a^2c^2
利用均值不等式有b^2/c^2+a^2c^2>=2ab当且仅当b/c=ac 即b/a=c^2时
等号成立
(2)将等式平方有
||a|-|b||^2=|a^2+b^2-2|a||b|
|a+b|^2=a^2+b^2+2ab
当a或者b<0的时候2ab=-2|a||b|当a或者b等于0的时候也一样.当a或者b同号时,-2|a||b|<2ab 所以||a|-|b||<=|a+b|
|a+b|=-a-b或者a-b 或者b-a 或者a+b
假设-a-b最大,则a<0,b<0 |a|+|b|=|-a-b|(1)
假设a-b最大,则a>0,b<0 |a|+|b|=|a-b|(2)
假设b-a最大,则a<0,b>0,|a|+|b|=|b-a|(3)
假设a+b最大,则a>0,b>0,|a|+|b|=|a+b|(4)
(1)(4)都是|a|+|b|=|a+b|的情况
(2)中|a+b|在b<=0的时候|a+b|<=|a-b| 所以有|a|+|b|>=|a+b|
(3)中|b-a|在a<=0的时候|a+b|<=|b-a| 所以有|a|+|b|>=|a+b|
右边展开
a^2+b^2+b^2/c^2+a^2c^2
即要证明2ab<=b^2/c^2+a^2c^2
利用均值不等式有b^2/c^2+a^2c^2>=2ab当且仅当b/c=ac 即b/a=c^2时
等号成立
(2)将等式平方有
||a|-|b||^2=|a^2+b^2-2|a||b|
|a+b|^2=a^2+b^2+2ab
当a或者b<0的时候2ab=-2|a||b|当a或者b等于0的时候也一样.当a或者b同号时,-2|a||b|<2ab 所以||a|-|b||<=|a+b|
|a+b|=-a-b或者a-b 或者b-a 或者a+b
假设-a-b最大,则a<0,b<0 |a|+|b|=|-a-b|(1)
假设a-b最大,则a>0,b<0 |a|+|b|=|a-b|(2)
假设b-a最大,则a<0,b>0,|a|+|b|=|b-a|(3)
假设a+b最大,则a>0,b>0,|a|+|b|=|a+b|(4)
(1)(4)都是|a|+|b|=|a+b|的情况
(2)中|a+b|在b<=0的时候|a+b|<=|a-b| 所以有|a|+|b|>=|a+b|
(3)中|b-a|在a<=0的时候|a+b|<=|b-a| 所以有|a|+|b|>=|a+b|
看了 设a,b,c∈R,且c≠0,...的网友还看了以下:
a,b,c成等差数列,那么证明a^2(b+c),b^2(a+c),c^2(b+c)成等差数列a^2 2020-04-26 …
如何确定偏导数极值?例如:已知a,b,c是满足a^2=b^2+c^2的正数,求函数f(a,b,c) 2020-04-26 …
利用余弦定理证明!△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc 2020-05-16 …
a,b,c成等差数列,那么证明a^2(b+c),b^2(a+c),c^2(b+c)成等差数列1 2020-05-20 …
八年级分式的运算已知a不等于b,b不等于c,c不等于a,且a/(b-c)+b/(c-a)+c/(a 2020-06-08 …
用向量证明余弦定理a、b、c都表示向量,|a|、|b|、|c|表示向量的模因为a=b-c所以a^2 2020-07-07 …
已知抛物线y=3ax2+2bx+c,(1)若a=3k,b=5k,c=k+1,试说明此类函数图象都具 2020-07-21 …
请教三角形的几个己和恒等式的证明设I,O分别是三角形ABC的内心与外心,p为半周长,a、b、c为边 2020-08-03 …
一道关于导数的问题!已知函数f(x)=x^2+bx+c(b,c∈R),对任意的X∈R,恒有f(x) 2020-08-03 …
这儿有两道蛮好玩的探究题,进来看看1证明a^2-b^2=0c^2-d^2=0ab-cd=0则a=b= 2020-11-04 …