早教吧作业答案频道 -->数学-->
用配方法求下列抛物线的顶点坐标和对称轴y=-3x²-2x+1,y=2x²+3x-1,y=-3x²+2x+3
题目详情
用配方法求下列抛物线的顶点坐标和对称轴
y= -3x²-2x+1 , y=2x²+3x-1 ,y= -3x²+2x+3
y= -3x²-2x+1 , y=2x²+3x-1 ,y= -3x²+2x+3
▼优质解答
答案和解析
y=-3x²-2x+1
=(-3x²-2x)+1
=-3[x²+(2/3)x]+1
=-3[x²+(2/3)x+(1/3)²]+1+3×(1/3)²
=-3[x+(1/3)]²+4/3
抛物线的顶点坐标为(-1/3 ,4/3),对称轴为x=-1/3
y=2x²+3x-1
=(2x²+3x)-1
=2[x²+(3/2)x]-1
=2[x²+(3/2)x+(3/4)²]-1-2×(3/4)²
=2[x+(3/4)]²-17/8
抛物线的顶点坐标为(-3/4,-17/8),对称轴为x=-3/4
y=-3x²+2x+3
=(-3x²+2x)+3
=-3[x²-(2/3)x]+3
=-3[x²-(2/3)x+(1/3)²]+3+3×(1/3)²
=-3[x-(1/3)]²+10/3
抛物线的顶点坐标为(1/3,10/3),对称轴为x=1/3
=(-3x²-2x)+1
=-3[x²+(2/3)x]+1
=-3[x²+(2/3)x+(1/3)²]+1+3×(1/3)²
=-3[x+(1/3)]²+4/3
抛物线的顶点坐标为(-1/3 ,4/3),对称轴为x=-1/3
y=2x²+3x-1
=(2x²+3x)-1
=2[x²+(3/2)x]-1
=2[x²+(3/2)x+(3/4)²]-1-2×(3/4)²
=2[x+(3/4)]²-17/8
抛物线的顶点坐标为(-3/4,-17/8),对称轴为x=-3/4
y=-3x²+2x+3
=(-3x²+2x)+3
=-3[x²-(2/3)x]+3
=-3[x²-(2/3)x+(1/3)²]+3+3×(1/3)²
=-3[x-(1/3)]²+10/3
抛物线的顶点坐标为(1/3,10/3),对称轴为x=1/3
看了 用配方法求下列抛物线的顶点坐...的网友还看了以下:
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
已知x/(x^2+x+1)=1/4,求分式x^2/(x^4+x^2+1)的值我查到了2种方法啊貌似 2020-05-12 …
解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/ 2020-05-16 …
1.已知函数f(x)满足f(x)+2f(1/x)=2x-1,求f(x)2.设f(x)是定义在R上的 2020-05-23 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x 2020-08-03 …
给这几个命题的证明,1.若f(x+a)=f(b-x),对于x∈R恒成立,则y=f(x)的图象关于直线 2020-11-11 …