早教吧作业答案频道 -->数学-->
正数列{an}中的前n项和Sn满足2Sn=an^2+an-2.设cn=4^n+(-1)m2^an,m为非零整数,确定m值,有cn+1>cn恒成立
题目详情
正数列{an}中的前n项和Sn满足2Sn=an^2+an-2.设cn=4^n+(-1)m2^an,m为非零整数,确定m值,有cn+1>cn恒成立
▼优质解答
答案和解析
∵2Sn=an^2+an-2
∴2S(n+1)=a²(n+1)+a(n+1)-2
两式相减
2a(n+1)=2S(n+1)-2Sn=a²(n+1)+a(n+1)-a²n-an
∴a²(n+1)-a²n=a(n+1)+an
∴[a(n+1)+an][a(n+1)-an]=a(n+1)+an
∵an>0
∴a(n+1)-an=1
∴{an}为等差数列,公差为1
又n=1时,2a1=a²1+a1-2
∴a²1-a1-2=0
∴a1=2 (舍负)
∴an=n+1
cn=4^n-m*2^(n+1)
=(2^n)²-2m*2^n
=(2^n-m)²-m²
对称轴为m
∵ 2^n=2,4,8,.
若c(n+1)>cn恒成立
则m
∴2S(n+1)=a²(n+1)+a(n+1)-2
两式相减
2a(n+1)=2S(n+1)-2Sn=a²(n+1)+a(n+1)-a²n-an
∴a²(n+1)-a²n=a(n+1)+an
∴[a(n+1)+an][a(n+1)-an]=a(n+1)+an
∵an>0
∴a(n+1)-an=1
∴{an}为等差数列,公差为1
又n=1时,2a1=a²1+a1-2
∴a²1-a1-2=0
∴a1=2 (舍负)
∴an=n+1
cn=4^n-m*2^(n+1)
=(2^n)²-2m*2^n
=(2^n-m)²-m²
对称轴为m
∵ 2^n=2,4,8,.
若c(n+1)>cn恒成立
则m
看了 正数列{an}中的前n项和S...的网友还看了以下:
(1)设k∈R,当k变化时,直线(2k-1)x-(k+3)y-(k-11)=0有什么不变的性质(2 2020-04-27 …
不等式的证明设m,n为正整数,f(n)=1+1/2+1/3+.+1/n,证明(1)若n>m,则f( 2020-07-16 …
设有N件产品,从中任取n件.(不放回)书上写取法共CnN,即[N(N-1)…(N-n+1)]/n! 2020-07-21 …
设n∈N*,f(n)=1+12+13+…+1n,计算得f(2)=32,f(4)>2,f(8)>52 2020-07-22 …
一道二项式的题目设n是满足C(n,0)+C(n,1)+2C(n,2)+……+nC(n,n)C(n, 2020-07-31 …
数学归纳法为什么要设k?数学归纳法证明的第二步是先设n=k假设n=k时命题成立证明n=k+1时命题 2020-08-01 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
一个关于设法向量的问题一个正方体,ABCD-A'B'C'D',边长为4,底面的法向量为什么可以设成n 2020-11-27 …