早教吧作业答案频道 -->数学-->
怎么求椭圆的焦点坐标?假如我已经知道某椭圆的方程为:AX^2+BXY+CY^2+DX+EY+F=0;如何用A,B,C,D,E,F这些参数得到椭圆中心点的坐标,椭圆的长半轴,短半轴,和长轴与X轴的夹角?
题目详情
怎么求椭圆的焦点坐标?
假如我已经知道某椭圆的方程为:AX^2+BXY+CY^2+DX+EY+F=0;
如何用A,B,C,D,E,F这些参数得到椭圆中心点的坐标,椭圆的长半轴,短半轴,和长轴与X轴的夹角?
假如我已经知道某椭圆的方程为:AX^2+BXY+CY^2+DX+EY+F=0;
如何用A,B,C,D,E,F这些参数得到椭圆中心点的坐标,椭圆的长半轴,短半轴,和长轴与X轴的夹角?
▼优质解答
答案和解析
AX^2 + BXY + CY^2 + DX + EY + F [A不等于0,不妨设A>0]
= A{X^2 + BXY/A + [BY/(2A)]^2} - B^2Y^2/(4A) + CY^2 + DX + EY + F
= A{[X + BY/(2A)]^2 + D[X + BY/(2A)]/A} - DBY/(2A) + Y^2[C - B^2/(4A)] + EY + F
= A{[X + BY/(2A)]^2 + D[X + BY/(2A)]/A + [D/(2A)]^2} - D^2/(4A) + Y^2[C - B^2/(4A)] + Y[E - BD/(2A)] + F
= A{X + BY/(2A) + D/(2A)}^2 + Y^2[C - B^2/(4A)] + Y[E - BD/(2A)] + F - D^2/(4A) 【C - B^2/(4A)不等于0,因A>0,所以 C - B^2/(4A)>0】
= A{X + BY/(2A) + D/(2A)}^2 + [C - B^2/(4A)]{Y^2 + Y[E - BD/(2A)]/[C - B^2/(4A)]} + F - D^2/(4A)
= A{X + BY/(2A) + D/(2A)}^2 + [C - B^2/(4A)]{Y^2 + Y[E - BD/(2A)]/[C - B^2/(4A)] + {[E - BD/(2A)]/[2C - B^2/(2A)]}^2 } - [E - BD/(2A)]^2/[4C - B^2/A] + F - D^2/(4A)
= A{X + BY/(2A) + D/(2A)}^2 + [C - B^2/(4A)]{Y + [E - BD/(2A)]/[2C - B^2/(2A)]}^2 - [E - BD/(2A)]^2/[4C - B^2/A] + F - D^2/(4A)
[因A>0,所以,{[E - BD/(2A)]^2/[4C - B^2/A] - F + D^2/(4A)} > 0]
椭圆中心点的坐标为,
Y = -[E - BD/(2A)]/[2C - B^2/(2A)]
X = -[BY + D]/(2A) = -{D - B[E - BD/(2A)]/[2C - B^2/(2A)]}/(2A)
a^2 = {[E - BD/(2A)]^2/[4C - B^2/A] - F + D^2/(4A)}/A
b^2 = {[E - BD/(2A)]^2/[4C - B^2/A] - F + D^2/(4A)}/[C - B^2/(4A)]
a > 0,b > 0.
当a > b > 0时,长短半轴分别为a,b.
当b > a > 0时,长短半轴分别为b,a.
当a > b > 0时,长轴与X轴的夹角 = arctan{-B/(2A)}
当b > a > 0时,长轴与X轴的夹角 = PI/2 + arctan{-B/(2A)}
方法就是配方,化成标准型.
配方的时候,可以先把X^2 和XY项配成1项的平方,
然后在把X项也配进平方项.
最后,把Y^2和Y项配成平方.
就可以写成
AU^2 + PV^2 = Q了
使得U = 0,V = 0的点就是椭圆中心点.
Q/A,Q/P就是长短半轴的平方.
使得包含X^2,XY和X的平方项等于0的直线方程就是长轴或者短轴所在的直线方程.
设长半轴是a,半焦距为c,
则 (a-c) + a + c = 2a = 2[b^2 + c^2]^(1/2),
【椭圆远端点到焦点的距离之和 = 近端点到焦点的距离之和】
a^2 = b^2 + c^2,
c = (a^2 - b^2)^(1/2)
= A{X^2 + BXY/A + [BY/(2A)]^2} - B^2Y^2/(4A) + CY^2 + DX + EY + F
= A{[X + BY/(2A)]^2 + D[X + BY/(2A)]/A} - DBY/(2A) + Y^2[C - B^2/(4A)] + EY + F
= A{[X + BY/(2A)]^2 + D[X + BY/(2A)]/A + [D/(2A)]^2} - D^2/(4A) + Y^2[C - B^2/(4A)] + Y[E - BD/(2A)] + F
= A{X + BY/(2A) + D/(2A)}^2 + Y^2[C - B^2/(4A)] + Y[E - BD/(2A)] + F - D^2/(4A) 【C - B^2/(4A)不等于0,因A>0,所以 C - B^2/(4A)>0】
= A{X + BY/(2A) + D/(2A)}^2 + [C - B^2/(4A)]{Y^2 + Y[E - BD/(2A)]/[C - B^2/(4A)]} + F - D^2/(4A)
= A{X + BY/(2A) + D/(2A)}^2 + [C - B^2/(4A)]{Y^2 + Y[E - BD/(2A)]/[C - B^2/(4A)] + {[E - BD/(2A)]/[2C - B^2/(2A)]}^2 } - [E - BD/(2A)]^2/[4C - B^2/A] + F - D^2/(4A)
= A{X + BY/(2A) + D/(2A)}^2 + [C - B^2/(4A)]{Y + [E - BD/(2A)]/[2C - B^2/(2A)]}^2 - [E - BD/(2A)]^2/[4C - B^2/A] + F - D^2/(4A)
[因A>0,所以,{[E - BD/(2A)]^2/[4C - B^2/A] - F + D^2/(4A)} > 0]
椭圆中心点的坐标为,
Y = -[E - BD/(2A)]/[2C - B^2/(2A)]
X = -[BY + D]/(2A) = -{D - B[E - BD/(2A)]/[2C - B^2/(2A)]}/(2A)
a^2 = {[E - BD/(2A)]^2/[4C - B^2/A] - F + D^2/(4A)}/A
b^2 = {[E - BD/(2A)]^2/[4C - B^2/A] - F + D^2/(4A)}/[C - B^2/(4A)]
a > 0,b > 0.
当a > b > 0时,长短半轴分别为a,b.
当b > a > 0时,长短半轴分别为b,a.
当a > b > 0时,长轴与X轴的夹角 = arctan{-B/(2A)}
当b > a > 0时,长轴与X轴的夹角 = PI/2 + arctan{-B/(2A)}
方法就是配方,化成标准型.
配方的时候,可以先把X^2 和XY项配成1项的平方,
然后在把X项也配进平方项.
最后,把Y^2和Y项配成平方.
就可以写成
AU^2 + PV^2 = Q了
使得U = 0,V = 0的点就是椭圆中心点.
Q/A,Q/P就是长短半轴的平方.
使得包含X^2,XY和X的平方项等于0的直线方程就是长轴或者短轴所在的直线方程.
设长半轴是a,半焦距为c,
则 (a-c) + a + c = 2a = 2[b^2 + c^2]^(1/2),
【椭圆远端点到焦点的距离之和 = 近端点到焦点的距离之和】
a^2 = b^2 + c^2,
c = (a^2 - b^2)^(1/2)
看了 怎么求椭圆的焦点坐标?假如我...的网友还看了以下:
(Ⅰ)求经过点(-32,52),且与椭圆9x2+5y2=45有共同焦点的椭圆方程;(Ⅱ)已知椭圆以 2020-05-15 …
高中椭圆,求解 1,若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆方程为? 2 2020-05-16 …
椭圆x的平方+my的平方=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为椭圆x的平椭圆x的平方 2020-06-21 …
在椭圆焦点在x轴上时,长轴长在x轴上=2a;但是当椭圆焦点在y轴时,长轴长在y轴上,可是y轴上的不 2020-06-29 …
已知椭圆C1:x平方/100+y平方/64=1,设椭圆C2与椭圆C1的上轴长、短轴长分别相等,且椭 2020-07-09 …
求椭圆4x2+9y2=36的长轴长、短轴长、焦距、焦点坐标、顶点坐标,并做出椭圆的简图.求椭圆4x 2020-07-31 …
在空间直角坐标系中,方程表示中心在原点、其轴与坐标轴重合的某椭球面的标准方程.分别叫做椭球面的长轴 2020-07-31 …
已知以(0,根号3)为一个焦点,中心在坐标原点的椭圆M的长轴长是短轴长的2倍.求椭圆M的方程.设直 2020-07-31 …
平面提问已知椭圆C经过点A(-3,2),且和椭圆X²/9+y²/4=1有相同的交点,求椭圆C的标准 2020-08-01 …
在空间直角坐标系O-xyz中,方程表示中心在原点、其轴与坐标轴重合的某椭球面的标准方程.2a,2b 2020-08-02 …