早教吧作业答案频道 -->数学-->
已知AB过x轴上的点A(3/2,0),且与抛物线y=ax^2相交于B,C两点,点B的坐标(1,1)(1)求直线和抛物线的解析式(2)抛物线上是否存在一点D,使S△OAD=S△OBC?若存在,请求出点D的坐标;若不存在,请说明理
题目详情
已知AB过x轴上的点A(3/2,0),且与抛物线y=ax^2相交于B,C两点,点B的坐标(1,1)
(1)求直线和抛物线的解析式
(2)抛物线上是否存在一点D,使S△OAD=S△OBC?若存在,请求出点D的坐标;若不存在,请说明理由
(1)求直线和抛物线的解析式
(2)抛物线上是否存在一点D,使S△OAD=S△OBC?若存在,请求出点D的坐标;若不存在,请说明理由
▼优质解答
答案和解析
1、直线过AB,根据两点式
(y-0)/(1-0)=(x-3/2)/(1-3/2)
化简得 y=-2x+3
把(1,1)代入抛物线方程得 a=1
所以直线解析式为 y=-2x+3
抛物线解析式为 y=x^2
2、存在这样的点D
把y=-2x+3代入抛物线解得
x^2=-2x+3
x1=1,y1=1;x2=-3,y2=9
所以C点坐标(-3,9)
|BC|=√((-3-1)^2+(9-1)^2)=√80
根据点线距离公式,O到直线的距离为
|2*0+1*0-3|/√(2^2+1^2)=3/√5
S△OBC=(√80*3/√5)/2=6
设D(y^2,y),因为y>=0
S△OAD=|OA|*y/2=(3/2)*y/2=6
y=6*4/3=8
x^2=8
x1=-2√2,x2=2√2
所以D点的坐标为 (-2√2,8)或(2√2,8)
(y-0)/(1-0)=(x-3/2)/(1-3/2)
化简得 y=-2x+3
把(1,1)代入抛物线方程得 a=1
所以直线解析式为 y=-2x+3
抛物线解析式为 y=x^2
2、存在这样的点D
把y=-2x+3代入抛物线解得
x^2=-2x+3
x1=1,y1=1;x2=-3,y2=9
所以C点坐标(-3,9)
|BC|=√((-3-1)^2+(9-1)^2)=√80
根据点线距离公式,O到直线的距离为
|2*0+1*0-3|/√(2^2+1^2)=3/√5
S△OBC=(√80*3/√5)/2=6
设D(y^2,y),因为y>=0
S△OAD=|OA|*y/2=(3/2)*y/2=6
y=6*4/3=8
x^2=8
x1=-2√2,x2=2√2
所以D点的坐标为 (-2√2,8)或(2√2,8)
看了 已知AB过x轴上的点A(3/...的网友还看了以下:
已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).(1)求 2020-04-25 …
直线y=3分之根3x+b经过点B﹙﹣根3,2﹚,且与x轴交于点A.将抛物线y=3分之1x?沿x轴作 2020-06-08 …
在直角坐标系中,已知线段AB,点A的坐标为(1,-2),点B的坐标为(3,0),如图1所示.(1) 2020-06-14 …
已知ABC中,点A,B的坐标分别为(-√2,0)(√2,0)点C在X轴上方若点C坐标(√2,1), 2020-06-21 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与X轴的正方向交于A,0为坐标原点,以OA 2020-06-29 …
已知二次涵数Y=X的二次方-(2m+4)X+(m-2)(m+2)的图象与Y轴交点C在原点下方,与X 2020-06-29 …
快开学了,1)将平行四边形ABCD的对角线交点与直角坐标系的原点重合,且点A,B的坐标分别为(-2 2020-07-04 …
在平面直角坐标系中,O为坐标原点,直线y=-x+6与x轴交于点A,与y轴交于点B,抛物线y=ax2 2020-07-25 …
按下列要求画出图形.(1)直线AB外有一点C.(2)点C,D是线段AB的三等分点.(3)直线AB, 2020-08-01 …
原题:原题:我们知道,2条直线相交只有1个交点,3条直线两两相交最多能有3个交点,4条直线两两相交最 2020-11-27 …