早教吧作业答案频道 -->数学-->
△ABD△BCE都是等边三角形,且ABC三点共线,AE与BD交于M,AE与CD交于N,AE与CD交于G,求∠AGC的大小.(2)若A、B、C三点不共线,其余条件不变,仍求∠AGC的度数
题目详情
△ABD△BCE都是等边三角形,且ABC三点共线,AE与BD交于M,AE与CD交于N,AE与CD交于G,求∠AGC的大小.
(2)若A、B、C三点不共线,其余条件不变,仍求∠AGC的度数
(2)若A、B、C三点不共线,其余条件不变,仍求∠AGC的度数
▼优质解答
答案和解析
第一问:ABC三点在同一直线上,三角形ABC和三角形BCE都是等边三角形,AE交BD于点M,CD交BE于点N
求证:三角形MNB是等边三角形
1/AB+1/BD=1/MN
分析:由已知可得∠1=∠2=60°,于是 ∠3=60°;要证△BMN 是等边三角形,只需证 BM=BN 即可;要证 BM=BN,只需证
△ABM≌△DBN 即可.
证明:∵AB=BD=DA、BC=CE=EB(已知)
∴ ∠1=∠2=60°(等边三角形的每一个角都是60° )
∴∠3=180°-(∠1+∠2)=60°(平角定义)
在△ABE 与△DBC 中,
∴△ABE≌△DBC(SAS)
∴∠4=∠5(全等三角形对应角相等)
在△ABM 与△DBN 中,
∴△ABM≌△DBN(ASA)
∴BM=BN(全等三角形对应边相等)
∴△BMN 是等边三角形(有一个角等于60°的等腰三角形是等边三角形)
第二问:
第二问,我按上面的解答如下:
∵∠DBE=∠EBC
∴BE是∠DBC的内角平分线
∴\x0f=\x0f
∵\x0f=\x0f
∴\x0f=\x0f=\x0f=1+\x0f=1+\x0f
即\x0f=1+\x0f
两边都除以BC,则\x0f=\x0f+\x0f
即1/AB+1/BC=1/MN
求证:三角形MNB是等边三角形
1/AB+1/BD=1/MN
分析:由已知可得∠1=∠2=60°,于是 ∠3=60°;要证△BMN 是等边三角形,只需证 BM=BN 即可;要证 BM=BN,只需证
△ABM≌△DBN 即可.
证明:∵AB=BD=DA、BC=CE=EB(已知)
∴ ∠1=∠2=60°(等边三角形的每一个角都是60° )
∴∠3=180°-(∠1+∠2)=60°(平角定义)
在△ABE 与△DBC 中,
∴△ABE≌△DBC(SAS)
∴∠4=∠5(全等三角形对应角相等)
在△ABM 与△DBN 中,
∴△ABM≌△DBN(ASA)
∴BM=BN(全等三角形对应边相等)
∴△BMN 是等边三角形(有一个角等于60°的等腰三角形是等边三角形)
第二问:
第二问,我按上面的解答如下:
∵∠DBE=∠EBC
∴BE是∠DBC的内角平分线
∴\x0f=\x0f
∵\x0f=\x0f
∴\x0f=\x0f=\x0f=1+\x0f=1+\x0f
即\x0f=1+\x0f
两边都除以BC,则\x0f=\x0f+\x0f
即1/AB+1/BC=1/MN
看了 △ABD△BCE都是等边三角...的网友还看了以下:
如图,平行四边形ABCD的对角线AC的垂直平分线与边AD,BC分别相交于E,F,求证:四边形A如图 2020-05-16 …
直角坐标系中角α的顶点是原点,始边与x轴正半轴重合,终边交单位圆与点A,α∈(π/6,π/2).将 2020-05-16 …
将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC 2020-05-17 …
将边长为8的正方形ABCD折叠,是顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折 2020-05-17 …
将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E交BC于F,边AB折叠后与BC边 2020-05-17 …
将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC 2020-05-17 …
已知二次函数y=x的平方-2x-3与x轴交于AB两点(A在B左边),交y轴于C,顶点为P,在抛物已知 2020-11-27 …
某电厂规定:该厂家属区的每户居民如果一个月的用电量不超过A千瓦时,那么每户只要交10元用电费;如果超 2020-11-30 …
某电厂规定,该厂家家属区每户居民如果一个月的用电量不超过A度,那么这个居民这个月只需交10元电费;如 2020-11-30 …
a+b>=2根号ab,p反比例上任一点,过p做x,y轴的垂线交点为C,D.A(四边形面积最小时,四边 2020-12-25 …