早教吧作业答案频道 -->其他-->
如图已知经过原点的抛物线y=ax2+bx(a不等于0)经过A(-2,2),B(6,6)两点已知过原点的抛物线y=ax2+bx+c经过如图,已知经过原点的抛物线y=ax^2+bx(a≠0)经过A(-2,2),B(6,6)两点,与x轴的另一交点为F,直线AB与x轴
题目详情
如图已知经过原点的抛物线y=ax2+bx(a不等于0)经过A(-2,2),B(6,6)两点已知过原点的抛物线y=ax2+bx+c经过
如图,已知经过原点的抛物线y=ax^2+bx(a≠0)经过A(-2,2),B(6,6)两点,与x轴的另一交点为F,直线AB与x轴交于C已知过原点的抛物线y=ax2+bx+c经过A(-2,2)B(6,6)两点,与x轴的另一交点为F,直线AB与x轴交于C,与y轴交于D,求(1)若点E为线段CF上的一个动点(F、C两点除外),过点E作EG//BC交BF与点G,连结ED、GD,当三角形EDG的面积最大时,求E点的坐标
(2)点H(4,m)为抛物线上一点,在(1)的条件下,问:抛物线上是否存在点P,使△EPH为直角三角形,若存在,求出P点坐标
如图,已知经过原点的抛物线y=ax^2+bx(a≠0)经过A(-2,2),B(6,6)两点,与x轴的另一交点为F,直线AB与x轴交于C已知过原点的抛物线y=ax2+bx+c经过A(-2,2)B(6,6)两点,与x轴的另一交点为F,直线AB与x轴交于C,与y轴交于D,求(1)若点E为线段CF上的一个动点(F、C两点除外),过点E作EG//BC交BF与点G,连结ED、GD,当三角形EDG的面积最大时,求E点的坐标
(2)点H(4,m)为抛物线上一点,在(1)的条件下,问:抛物线上是否存在点P,使△EPH为直角三角形,若存在,求出P点坐标
▼优质解答
答案和解析

经过A(-2,2)、B(6,6)两点的直线的解析式为:y=x/2+3
过原点的抛物线的解析式为:y=x^2/4-x/2,与x轴的另一个交点F(2,0)
经过B、F两点的直线的解析式为:y=3x/2-3
设E点的坐标为(a,0) (a<0)
因为直线EG平行于直线AB,
所以直线EG的解析式为:y=x/2-a/2
所以直线EG与BF的交点的横坐标为 x=3-a/2,与y轴的交点坐标为H(0,-a/2)
所以OH=|-a/2|=-a/2 所以DH=3+a/2
因为点G到y轴的距离为|x|=|3-a/2|
S△DEG=S△DEH+S△DHG
=1/2×DH×OE+1/2×DH×|x|
=1/2×(3+a/2)×|a|+1/2×(3+a/2)×(3-a/2)
=-3x^2/8-3x/2+9/2
因为-3/8<0,所以当x=-2时,S△DEG有最大值6,所以点E的坐标为(-2,0).
(2)H(4,m)代入抛物线方程y=x^2/4-x/2得m=y=2,故点H为(4,2),点E(-2,0)
设点P坐标为(p,p^2/4-p/2),依据题意知道EP⊥EH或者EP⊥PH或者PH⊥EH:
EH的斜率为:1/3
EP的斜率为:(p^2-2p)/(4p+8)
PH的斜率为:(p^2-2p-8)/(4p-16)=(p+2)/4,(p≠4)
依据前面所述,可得如下关系式:
【(p^2-2p)/(4p+8)】*(1/3)=-1,解得p=-4或者p=-6,点P为(-4,6)或者(-6,12)
【(p^2-2p)/(4p+8)】*【(p+2)/4】=-1,即:p^2-2p+16=0,无解.
【(p+2)/4】*(1/3)=-1,解得p=-14,点P为(-14,56)
故所求点P为(-4,6)或者(-6,12)或者(-14,56)

经过A(-2,2)、B(6,6)两点的直线的解析式为:y=x/2+3
过原点的抛物线的解析式为:y=x^2/4-x/2,与x轴的另一个交点F(2,0)
经过B、F两点的直线的解析式为:y=3x/2-3
设E点的坐标为(a,0) (a<0)
因为直线EG平行于直线AB,
所以直线EG的解析式为:y=x/2-a/2
所以直线EG与BF的交点的横坐标为 x=3-a/2,与y轴的交点坐标为H(0,-a/2)
所以OH=|-a/2|=-a/2 所以DH=3+a/2
因为点G到y轴的距离为|x|=|3-a/2|
S△DEG=S△DEH+S△DHG
=1/2×DH×OE+1/2×DH×|x|
=1/2×(3+a/2)×|a|+1/2×(3+a/2)×(3-a/2)
=-3x^2/8-3x/2+9/2
因为-3/8<0,所以当x=-2时,S△DEG有最大值6,所以点E的坐标为(-2,0).
(2)H(4,m)代入抛物线方程y=x^2/4-x/2得m=y=2,故点H为(4,2),点E(-2,0)
设点P坐标为(p,p^2/4-p/2),依据题意知道EP⊥EH或者EP⊥PH或者PH⊥EH:
EH的斜率为:1/3
EP的斜率为:(p^2-2p)/(4p+8)
PH的斜率为:(p^2-2p-8)/(4p-16)=(p+2)/4,(p≠4)
依据前面所述,可得如下关系式:
【(p^2-2p)/(4p+8)】*(1/3)=-1,解得p=-4或者p=-6,点P为(-4,6)或者(-6,12)
【(p^2-2p)/(4p+8)】*【(p+2)/4】=-1,即:p^2-2p+16=0,无解.
【(p+2)/4】*(1/3)=-1,解得p=-14,点P为(-14,56)
故所求点P为(-4,6)或者(-6,12)或者(-14,56)
看了 如图已知经过原点的抛物线y=...的网友还看了以下:
已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与坐标的两个交点B、C(1 2020-04-26 …
已知,抛物线y=ax^2+bx+c的顶点是2-1 且经过点1-0 则抛物线的函数关系式为什么?已知 2020-05-16 …
如图,已知直线y=x+2与两坐标轴分别交于A、B两点,抛物线y=x2+bx+c经过点A、B,P为直 2020-06-14 …
(2014•普陀区一模)如图,抛物线y=ax2-2ax+b经过点C(0,-32),且与x轴交于点A 2020-06-15 …
已知抛物线y=x^2-mx+m^2/2与抛物线y=x^2+mx-3/4m^2,它们在平面直角坐标系 2020-07-19 …
(2008•厦门)已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).(1)求b+c的 2020-07-19 …
如图,抛物线y=12x2+mx+n交x轴于A、B两点,直线y=kx+b经过点A,与这条抛物线的对称 2020-07-21 …
如图,抛物线y=ax2+bx+c经过点O(0,0),A(4,0),B(5,5).点C是y轴负半轴上 2020-07-26 …
如图,已知直线y=x+2与两坐标轴分别交与A、B两点,抛物线y=x2+bx+c经过点A、B,P为直线 2021-01-10 …
如图,已知直线y=2x+6与x轴,y轴分别交于A,D两点,抛物线y=ax^2+bx+2(a≠0)经过 2021-01-11 …