早教吧作业答案频道 -->数学-->
圆心为椭圆顶点,半径为椭圆半长轴的圆与椭圆相交,假设圆心为左顶点,圆方程(x+a)2+y2=a2,椭圆方程x2\a2+y2\b2=1,联立方程组,消y,得c2x2\a2+2ax+b2=0,得出仅当c=0时和a2=bc时x只有一个解,但根据画图得
题目详情
圆心为椭圆顶点,半径为椭圆半长轴的圆与椭圆相交,假设圆心为左顶点,圆方程(x+a)2+y2=a2,椭圆方程x2\a2+y2\b2=1,联立方程组,消y,得c2x2\a2+2ax+b2=0,得出仅当c=0时和a2=bc时x只有一个解,但根据画图得到的是两交点永远关于x轴对称,即x永远只有一个解,谁能帮忙解释一下,谢!
▼优质解答
答案和解析
两个解中,其中一个不是啊.多出来的一个解是因为当你消方程的时候,x的范围变了.在椭圆方程中y2大于等于0,当你用圆方程中的a2-(x+a)2代入的时候就变了,因为在新的方程中a2-(x+a)2不需要满足大于等于0的条件.所以联立方程组后应该包含2个方程,一个你已经写出来了, 另一个是x的范围,-2a小于等于x小于等于0.进一步研究,也可以证明两个解分别在(-a,0)和(-无穷,-2a).
看了 圆心为椭圆顶点,半径为椭圆半...的网友还看了以下:
f(x)=2ax²+x+1在(-∞,0)恰有一个零点,求a的取值范围 2020-05-13 …
若方程2ax²-x-1=0在(0,1)内恰有一个解求a的取值范围 2020-05-16 …
若方程2ax²-x-1=0在区间(0,1)内有一个解,则a的取值范围是 2020-05-16 …
方程2ax²-x-1=0在(0,1)内有恰一解,求实数a的取值范围 2020-05-16 …
若函数f(x)=2ax-x-1的图像在区间(0,1)内恰与x轴有一个交点,则a的取值范围是什么a> 2020-06-02 …
高中导数问题,高手请进1.f(x)=ln|x|,当x<0时,为什么f'(x)=1/x?2.还有f( 2020-06-06 …
已知f(x+x/1)=x^2+(1/x^2)+3,求f(x)已知f(x/x+1)=x^2+1/x^ 2020-06-07 …
设X≥1,比较因为比较x3与x2-x+1的大小解x-(x-x+1)=x-x+x-1=x(x-1)+ 2020-06-18 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
求:到想到正确的解题方法,的整个思考过程)(注意:是思考过程)方程2ax²-x-1=0,在-1≤x≤ 2020-12-12 …