早教吧作业答案频道 -->数学-->
证明四点A(0,1)B(2,1)C(3,4)D(-1,2)共圆
题目详情
证明四点A(0,1)B(2,1)C(3,4)D(-1,2)共圆
▼优质解答
答案和解析
证明四点共圆有下述一些基本方法:
方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.
方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆. (若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)
方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)
方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.
上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.
学几何的最好方法是学会用《几何画板》,自己多画图.
方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.
方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆. (若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)
方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)
方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.
上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.
学几何的最好方法是学会用《几何画板》,自己多画图.
看了 证明四点A(0,1)B(2,...的网友还看了以下:
问几个c问题1,设x=2.5,y=4.7,a=7,则x+a%3*(int)(x+y)%2/4=2, 2020-04-08 …
已知某圆锥的侧面积是其底面积的2倍,圆锥的外接球的表面积为16π,则该圆锥的体积为()A.πB.2 2020-05-13 …
有块边长2米的正方形蓝底白圆花布,上面的白圆点排成正方形点阵,这些小正方形的边与花布的边平行.已知 2020-05-13 …
若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为()A.πB.2πC.3πD. 2020-05-14 …
若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为()A.πB.2πC.3πD. 2020-05-14 …
求问高一二次函数一题设-2x^3-4x^2-x+3=a(x+1)^3+b(x+1)^2+c(x+1 2020-05-20 …
如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几 2020-06-30 …
若有以下程序#include“stdio.h”main(){inta=1,b=2,c=3,d=4; 2020-07-23 …
1.计算1+2-3-4+5+6-7-8+9+10-11-12+……+2005+2006-2007- 2020-08-03 …
请问谁知道用matlab求解多元超越方程组的方法或思路或函数不?形如:a*(1+a+a^3+d+d^ 2020-12-14 …