在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),满足向量AnAn+1与向量BnCn共线,且点Bn(n,bn)(n∈N*)都在斜率为6的同一条直线上,若a1=6,b1=12.求:(1)数列{
在平面直角坐标系中,已知A
n(n,a
n)、B
n(n,b
n)、C
n(n-1,0)(n∈N
*),满足向量
与向量共线,且点Bn(n,bn)(n∈N*)都在斜率为6的同一条直线上,若a1=6,b1=12.求:
(1)数列{an}的通项an;
(2)数列{}的前n项和Tn.
答案和解析
(1)∵点B
n(n,b
n)(n∈N*)都在斜率为6的同一条直线上,
∴
=6,
即bn+1-bn=6,
于是数列{bn}是等差数列,
故bn=12+6(n-1)=6n+6.
∵=(1,an+1-an),=(-1,-bn),又与共线.
∴1×(-bn)-(-1)(an+1-an)=0,
即an+1-an=bn
∴当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=a1+b1+b2+b3+…+bn-1
=a1+b1(n-1)+3(n-1)(n-2)=3n(n+1)
当n=1时,上式也成立.
所以an═3n(n+1).
(2)=(-),
Tn=(1-+-+…+-)
=(1-)=.
{a(n)}中a(1)=3;na(n=+1)-(n+1)a(n)=2n(n+1);证明{a(n)/n 2020-03-30 …
n(n+1)(n+2)最大公约数(n+1)(n+2)(n+3)(n+4)+1=分解公因式要理由和步骤 2020-03-30 …
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
(n+1)(n+2)(n+3)(n+4)+1=()^2详细题目见补充1、观察下列运算并填空:1x2 2020-04-07 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
二次函数y=n(n+1)X^2-(2n+1)X+1 ,n=1,2,3.时,其图像在X轴上截得线段长 2020-05-16 …
1、等比数列中,知道a3=1,S3=13,怎么得出q=1/3?2、已知nS(n+1)>(n+1)S 2020-06-04 …
已知向量p=(an,n),向量q=(a(n+1),n+1),(n∈N*),若a1=3,向量p‖向量 2020-07-12 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
证明组合性质:C(n+1,m)=C(n,m)+C(n,m-1)C(n+1,m)=(n+1)!/m!( 2020-11-01 …