早教吧作业答案频道 -->数学-->
设数列{an}的前n项和为Sn=2n^2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{an}和{bn}的通项公式;(2)设Cn=an/bn,求数列{Cn}的前n项和Tn.
题目详情
设数列{an}的前n项和为Sn=2n^2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.
(1)求数列{an}和{bn}的通项公式;
(2)设Cn=an/bn,求数列{Cn}的前n项和Tn.
(1)求数列{an}和{bn}的通项公式;
(2)设Cn=an/bn,求数列{Cn}的前n项和Tn.
▼优质解答
答案和解析
a1=S1=2
Sn=2n^2
Sn-1=2(n-1)^2=2n^2-4n+2
an=Sn-Sn-1=2n^2-2n^2+4n-2=4n-2
n=1代入4-2=2=a1,同样满足.
数列{an}通项公式为an=4n-2
b1=a1=2
a2=4×2-2=6
b2(a2-a1)=b1
b2(6-2)=2
b2=1/2
b2/b1=(1/2)/2=1/4
数列{bn}是以2为首项,1/4为公比的等比数列.
bn=2(1/4)^(n-1)=8/4^n
数列{bn}的通项公式为bn=8/4^n
cn=an/bn=(4n-2)/[8/4^n]=(2n-1)4^n/4=2n4^(n-1)-4^(n-1)
Tn=2[1×4^0+2×4^1+3×4^2+...+n×4^(n-1)]-(4^n-1)/(4-1)
令Mn=1×4^0+2×4^1+3×4^2+...+n×4^(n-1)
则4Mn=4^1+2×4^2+3×4^3+...+(n-1)×4^(n-1)+n×4^n
Mn-4Mn=-3Mn=4^0+4^1+4^2+...+4^(n-1)-n×4^n=(4^n-1)/(4-1)-n4^n
Mn=n4^n/3-(4^n-1)/9
Tn=2n4^n/3-2(4^n-1)/9-(4^n-1)/3
=[6n4^n-2×4^n+2-3×4^n+3]/9
=[(6n-2-3)4^n+5]/9
=[(6n-5)4^n+5]/9
a1=S1=2
Sn=2n^2
Sn-1=2(n-1)^2=2n^2-4n+2
an=Sn-Sn-1=2n^2-2n^2+4n-2=4n-2
n=1代入4-2=2=a1,同样满足.
数列{an}通项公式为an=4n-2
b1=a1=2
a2=4×2-2=6
b2(a2-a1)=b1
b2(6-2)=2
b2=1/2
b2/b1=(1/2)/2=1/4
数列{bn}是以2为首项,1/4为公比的等比数列.
bn=2(1/4)^(n-1)=8/4^n
数列{bn}的通项公式为bn=8/4^n
cn=an/bn=(4n-2)/[8/4^n]=(2n-1)4^n/4=2n4^(n-1)-4^(n-1)
Tn=2[1×4^0+2×4^1+3×4^2+...+n×4^(n-1)]-(4^n-1)/(4-1)
令Mn=1×4^0+2×4^1+3×4^2+...+n×4^(n-1)
则4Mn=4^1+2×4^2+3×4^3+...+(n-1)×4^(n-1)+n×4^n
Mn-4Mn=-3Mn=4^0+4^1+4^2+...+4^(n-1)-n×4^n=(4^n-1)/(4-1)-n4^n
Mn=n4^n/3-(4^n-1)/9
Tn=2n4^n/3-2(4^n-1)/9-(4^n-1)/3
=[6n4^n-2×4^n+2-3×4^n+3]/9
=[(6n-2-3)4^n+5]/9
=[(6n-5)4^n+5]/9
看了 设数列{an}的前n项和为S...的网友还看了以下:
1.集合A={x/ x=2n+1,n属于Z},B={x/ x=4n±1,n属于Z},则A与B的关系 2020-04-05 …
数列极限的定义{an}2.9,2.999,2.99999,…,2.99999(2n-1个9){bn 2020-05-16 …
设数列{An}满足a1=2,A的n+1项减A的第n项=3×2^2n-1求{An}的通项公式令bn= 2020-06-06 …
(1)证明:①Crn+Cr+1n=Cr+1n+1;②Cn+12n+2=2Cn2n+1(其中n,r∈ 2020-06-11 …
已知数列{an}的前n项的平均数为2n+1 (1)求证:数列{an}是等差数列 (2)设an=(2 2020-06-27 …
在数列{an}中,设S1=a1+a2+……an,s2=a(n+1).在数列{an}中,设S1=a1 2020-07-09 …
已知数列a1=1,a2=γ(γ>0),令bn=an·a(n+1),(n,n+1为下标),且{bn} 2020-07-30 …
已知数列{an}、{bn}、{cn}满足(an+1-an)(bn+1-bn)=cn,n∈N*.(1 2020-08-02 …
已知数列{an}={2n-1(n为奇)3^n(n为偶),求数列{an}前n项和Sn2n-1(n为奇) 2020-11-07 …
相信这些题目对你而言是小case吧,知识点在高一范围内1、定义集合A*B={x|x属于A且x不属于B 2020-12-10 …