早教吧作业答案频道 -->数学-->
数列:A(n+1)^2+An^2+16=8[A(n+1)+An]+2A(n+1)An,则An=?
题目详情
数列:A(n+1)^2+An^2+16=8[A(n+1)+An]+2A(n+1)An,则An=?
▼优质解答
答案和解析
A(n+1)^2+An^2+16=8[A(n+1)+An]+2A(n+1)*An
A(n+1)^2+A(n+2)^2+16=8[A(n+1)+A(n+2)]+2A(n+1)*A(n+2)
A(n+2)^2-An^2=8*(A(n+2)-An)+2A(n+1)*(A(n+2)-An)
(A(n+2)-An)*(A(n+2)+An)=8*(A(n+2)-An)+2A(n+1)*(A(n+2)-An)
(A(n+2)-An)*(A(n+2)+An-2A(n+1)-8)=0
A(n+2)-A(n+1)=A(n+1)-An+8
这题少条件,如果知道A1,就能得出An了……
A(n+1)^2+A(n+2)^2+16=8[A(n+1)+A(n+2)]+2A(n+1)*A(n+2)
A(n+2)^2-An^2=8*(A(n+2)-An)+2A(n+1)*(A(n+2)-An)
(A(n+2)-An)*(A(n+2)+An)=8*(A(n+2)-An)+2A(n+1)*(A(n+2)-An)
(A(n+2)-An)*(A(n+2)+An-2A(n+1)-8)=0
A(n+2)-A(n+1)=A(n+1)-An+8
这题少条件,如果知道A1,就能得出An了……
看了 数列:A(n+1)^2+An...的网友还看了以下:
设{an}是首项为1的正项数列,且(n+1)*[a(n+1)]^2-n*(an)^2+a(n+1) 2020-04-09 …
1.已知数列{An}满足{An/n}是公差为1,的等差数列,且An+1=(n+2/n)·An+1( 2020-04-09 …
数列{an}满足a1=1,an+1=2^n+1*an/an+2^n(n∈N+)1)证明:数列{2^ 2020-05-17 …
已知数列{an}中,a1=1/2,且a(n+1)=an/2+(2n+3)/2^(n+1),n为正整 2020-06-27 …
1、若{An}满足An=n2+λn (λ∈ N*)为递增数列,求实数λ的取值范围.2、已知数列{A 2020-06-27 …
数列{an},{bn}中,a1=3,b1=0,当n≥2时an=[2a(n-1)+b(n-1)]/3 2020-07-09 …
已知数列{An}的前n项和为Sn,Sn=2-(2\n+1)*An.(1)求证:数列{An\n}是等 2020-07-30 …
已知数列{An}满足递推关系式:A(n+1)=1/2An^2-An+2,n>=1,n为整数.(1) 2020-08-01 …
已知数列(an)的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数(1)令bn=2^n* 2020-11-26 …
设数列{an}的前n项和为Sn,且a1=1,Sn=an+1-1(1)求数列{an}的通项公式(2)设 2021-02-09 …