早教吧作业答案频道 -->数学-->
证明∑(0->∞)(x^n)/[(n!)^2]满足方程xy''+y'-y=0
题目详情
证明∑(0->∞)(x^n)/[(n!)^2] 满足方程xy''+y'-y=0
▼优质解答
答案和解析
y=∑(0->∞)(x^n)/[(n!)^2]=1+∑(1->∞)(x^n)/[n!*n!]
y'=∑(1->∞)(x^(n-1))*n/[n!*n!]=∑(1->∞)(x^(n-1))/[n!*(n-1)!]
y'=1+∑(2->∞)(x^(n-1))/[n!*(n-1)!]
y''=∑(2->∞)(x^(n-2))*(n-1)/[n!*(n-1)!]
xy''=∑(2->∞)(x^(n-1))/[n!*(n-2)!]=∑(2->∞)(x^(n-1))*(n-1)/[n!*(n-1)!]
xy''+y'=∑(2->∞)(x^(n-1))*(n-1)/[n!*(n-1)!]+1+∑(2->∞)(x^(n-1))/[n!*(n-1)!]
=1+∑(2->∞)(x^(n-1))/[(n-1)!*(n-1)!]
=1+∑(1->∞)(x^(n))/[(n)!*(n)!]
=y
故xy''+y'-y=0
y'=∑(1->∞)(x^(n-1))*n/[n!*n!]=∑(1->∞)(x^(n-1))/[n!*(n-1)!]
y'=1+∑(2->∞)(x^(n-1))/[n!*(n-1)!]
y''=∑(2->∞)(x^(n-2))*(n-1)/[n!*(n-1)!]
xy''=∑(2->∞)(x^(n-1))/[n!*(n-2)!]=∑(2->∞)(x^(n-1))*(n-1)/[n!*(n-1)!]
xy''+y'=∑(2->∞)(x^(n-1))*(n-1)/[n!*(n-1)!]+1+∑(2->∞)(x^(n-1))/[n!*(n-1)!]
=1+∑(2->∞)(x^(n-1))/[(n-1)!*(n-1)!]
=1+∑(1->∞)(x^(n))/[(n)!*(n)!]
=y
故xy''+y'-y=0
看了 证明∑(0->∞)(x^n)...的网友还看了以下:
证明y=e^2x-2e^(-2x)满足y"-4y=0 2020-05-17 …
设x,y,z∈R+,求证:xyz(x+y+z+√(x^2+y^2+z^2))/(x^2+y^2+z 2020-06-02 …
设f(x,y)有一阶连续偏导数,f(0,1)=f(1,0),证明在x^2+y^2=1上至少存在两个 2020-06-10 …
设a,b为不等于1的正数,并且实数x,y,z满足关系式1/x+1/y=1/z(1)当a^x=b^y 2020-06-18 …
初二数学题目帮帮我啊1求证:"若X,Y为有理数,且X^2+Y^2+1/2=X+Y,则X=Y=1/2 2020-07-09 …
不等式的证明题最好能用换元法多谢1≦X²+Y²≦2求证:½≦X²-XY+Y²≦3已知X²-2XY+ 2020-08-01 …
不等式证明3实数x、y、z满足x^5+y^5=2.求证:x+y≤2.思考了两天已想出两种证法:(1) 2020-11-01 …
设函数y=sinx,证明y'=(sinx)'=cosx自变量改变量为△x函数改设函数y=sinx,证 2020-11-01 …
设幂级数∞n=0anxn在(-∞,+∞)内收敛,其和函数y(x)满足y″-2xy′-4y=0,y(0 2020-11-08 …
用反证法证明:“若x>0,y>0,x+y>2,求证x,y中至少有一个大于1”时,反设正确的是()A. 2020-12-14 …