早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 6 与设函数列{fn 相关的结果,耗时3 ms
设函数fn(x)=xn+x-1,其中n∈N*,且n≥2,给出下列三个结论:①函数f3(x)在区间(12,1)内不存在零点;②函数f4(x)在区间(12,1)内存在唯一零点;
数学
为函数f n (x)在区间(
设连续函数列{fn(x)}在[a,b]上一致收敛于函数f(x),xn∈[a,b](n=1,2,3…),limn→∞xn=x0则limn→∞fn(xn)=f(x0).
数学
一个函数列一致收敛的证明,设连续函数列{fn(x)}在[a,b]上一致收敛于f(x),而g(x)在(-∞,+∞)上连续.证明:{g(fn(x))}在[a,b]上一致收敛于g(f(x))
数学
设函数列{fn
(x)}与{gn(x)}在区间I上分别一致收敛于f(x)与g(x),且假定f(x)与g(x)都在I上有界.试证明:{fn(x)•gn(x)}在区间I上一致收敛于f(x)•g(x).
数学
设函数fn(x)(n=1,2,…)在[0,1]上连续,在(0,1)内可导,并且{fn(x)}在[0,1]上一致有界,{f′n(x)}在(0,1)上一致有界,证明:函数列fn(x)有一致收敛的子列.
其他
实变函数可测函数问题设{fn}是E上的非负可测函数列.证明,对任意ε>0,都有∑mE{x||fn(x)>ε|}<+∞,则必有limfn(x)=0a.e.onE.
数学
1
>
热门搜索: