早教吧作业答案频道 -->数学-->
矩阵A,B,且AB=BA,怎么证明(A+B)^n=C(n,0)A^n+C(n,1)A^(n-1)B+C(n,2)A^(n-2)B^2+...+C(n,n)B^n
题目详情
矩阵A,B,且AB=BA ,怎么证明(A+B)^n = C(n,0)A^n+C(n,1)A^(n-1)B+C(n,2)A^(n-2)B^2+...+C(n,n)B^n
▼优质解答
答案和解析
用数学归纳法
n=1时,显然有 (A+B)^1 = C(1,0)A+ C(1,1)B
设n=k时,成立,即 (A+B)^k = C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k
n=k+1时
(A+B)^(k+1)=(A+B)^k (A+B) = (C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k)(A+B)
=C(k,0)A^(k+1)+(C(k,1)+C(k,0))A^kB+C(k,2)A^(k-2)B³+...+ (C(k,k)+C(k,k-1))AB^k + C(k,k)B^(k+1)
=C(k+1,0)A^(k+1)+C(k+1,1)A^kB+...+C(k+1,k)AB^k + C(k+1,k+1)B^(k+1)
也成立.
故成立.交换性用在相乘的时候有 A^iB^j · A = A^(i+1)B^j
n=1时,显然有 (A+B)^1 = C(1,0)A+ C(1,1)B
设n=k时,成立,即 (A+B)^k = C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k
n=k+1时
(A+B)^(k+1)=(A+B)^k (A+B) = (C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k)(A+B)
=C(k,0)A^(k+1)+(C(k,1)+C(k,0))A^kB+C(k,2)A^(k-2)B³+...+ (C(k,k)+C(k,k-1))AB^k + C(k,k)B^(k+1)
=C(k+1,0)A^(k+1)+C(k+1,1)A^kB+...+C(k+1,k)AB^k + C(k+1,k+1)B^(k+1)
也成立.
故成立.交换性用在相乘的时候有 A^iB^j · A = A^(i+1)B^j
看了 矩阵A,B,且AB=BA,怎...的网友还看了以下:
(设A*为阶方阵的伴随矩阵且可逆,则结论正确的是()A(A*)*=lAl^(n-1)AB(A*)* 2020-06-12 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
数列{n×2^(n-1)}的前n项和为多少?A.-n*2^n-1+2^nBn*2^n+1-2^nC 2020-07-09 …
求n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2)在n趋于无穷时的极限求n 2020-07-20 …
用归纳法证明:(1).1+2+3+...+n=n/2(n+1)(2).以a1为首项、以q为公比的等 2020-07-29 …
数列一题设函数f(n)=n(n为自然数,奇数)=n/2(n为自然数,偶数)设数列an=f(1)+f 2020-07-30 …
什么是二项式的通式?在二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+ 2020-07-31 …
初三的一元二次方程1,对于任何x都有x^2+mx+25=(x-n)^2(n>0),则m=?n=?2 2020-08-02 …
1/((n^2-1)2^n)级数的和级数(n从2到无穷)1/((n^2-1)2^n)=0.5级数1/ 2020-11-18 …
分解因式谁能给我讲解下!a^n+b^n=(a+b)([a^{n-1}]-[a^{n-2}]*b+[a 2020-11-20 …