早教吧作业答案频道 -->数学-->
矩阵A,B,且AB=BA,怎么证明(A+B)^n=C(n,0)A^n+C(n,1)A^(n-1)B+C(n,2)A^(n-2)B^2+...+C(n,n)B^n
题目详情
矩阵A,B,且AB=BA ,怎么证明(A+B)^n = C(n,0)A^n+C(n,1)A^(n-1)B+C(n,2)A^(n-2)B^2+...+C(n,n)B^n
▼优质解答
答案和解析
用数学归纳法
n=1时,显然有 (A+B)^1 = C(1,0)A+ C(1,1)B
设n=k时,成立,即 (A+B)^k = C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k
n=k+1时
(A+B)^(k+1)=(A+B)^k (A+B) = (C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k)(A+B)
=C(k,0)A^(k+1)+(C(k,1)+C(k,0))A^kB+C(k,2)A^(k-2)B³+...+ (C(k,k)+C(k,k-1))AB^k + C(k,k)B^(k+1)
=C(k+1,0)A^(k+1)+C(k+1,1)A^kB+...+C(k+1,k)AB^k + C(k+1,k+1)B^(k+1)
也成立.
故成立.交换性用在相乘的时候有 A^iB^j · A = A^(i+1)B^j
n=1时,显然有 (A+B)^1 = C(1,0)A+ C(1,1)B
设n=k时,成立,即 (A+B)^k = C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k
n=k+1时
(A+B)^(k+1)=(A+B)^k (A+B) = (C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k)(A+B)
=C(k,0)A^(k+1)+(C(k,1)+C(k,0))A^kB+C(k,2)A^(k-2)B³+...+ (C(k,k)+C(k,k-1))AB^k + C(k,k)B^(k+1)
=C(k+1,0)A^(k+1)+C(k+1,1)A^kB+...+C(k+1,k)AB^k + C(k+1,k+1)B^(k+1)
也成立.
故成立.交换性用在相乘的时候有 A^iB^j · A = A^(i+1)B^j
看了 矩阵A,B,且AB=BA,怎...的网友还看了以下:
请问这个题目该怎么解?3-1=27-3=413-7=621-13=831-21=10即a2-a1=2 2020-03-31 …
向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两 2020-05-13 …
A(n,n)=n(n-1)(n-2)……·3·2·1怎么理解麻烦写下过程c(2,3)c(1,4)= 2020-05-14 …
matlab函数调用问题,一个矩阵的自变量,怎么都是同一个答案function [ E ] = p 2020-05-16 …
为什么当m→0时,(m+1)^(1/m)→e,怎么证明?令n=1/m则(m+1)^(1/m)=(1 2020-05-21 …
1、等比数列中,知道a3=1,S3=13,怎么得出q=1/3?2、已知nS(n+1)>(n+1)S 2020-06-04 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
若数列{bn}满足,b1/a1+b2/a2+.+bn/an=1-1/2^n,n∈N+,求{bn}的 2020-07-23 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
1.M={x|x=2n+1,n∈Z},N={y=4n±1,n∈Z}求证M=N怎么证M包含于N关于N包 2020-12-02 …