早教吧作业答案频道 -->数学-->
矩阵A,B,且AB=BA,怎么证明(A+B)^n=C(n,0)A^n+C(n,1)A^(n-1)B+C(n,2)A^(n-2)B^2+...+C(n,n)B^n
题目详情
矩阵A,B,且AB=BA ,怎么证明(A+B)^n = C(n,0)A^n+C(n,1)A^(n-1)B+C(n,2)A^(n-2)B^2+...+C(n,n)B^n
▼优质解答
答案和解析
用数学归纳法
n=1时,显然有 (A+B)^1 = C(1,0)A+ C(1,1)B
设n=k时,成立,即 (A+B)^k = C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k
n=k+1时
(A+B)^(k+1)=(A+B)^k (A+B) = (C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k)(A+B)
=C(k,0)A^(k+1)+(C(k,1)+C(k,0))A^kB+C(k,2)A^(k-2)B³+...+ (C(k,k)+C(k,k-1))AB^k + C(k,k)B^(k+1)
=C(k+1,0)A^(k+1)+C(k+1,1)A^kB+...+C(k+1,k)AB^k + C(k+1,k+1)B^(k+1)
也成立.
故成立.交换性用在相乘的时候有 A^iB^j · A = A^(i+1)B^j
n=1时,显然有 (A+B)^1 = C(1,0)A+ C(1,1)B
设n=k时,成立,即 (A+B)^k = C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k
n=k+1时
(A+B)^(k+1)=(A+B)^k (A+B) = (C(k,0)A^k+C(k,1)A^(k-1)B+C(k,2)A^(k-2)B^2+...+C(k,k)B^k)(A+B)
=C(k,0)A^(k+1)+(C(k,1)+C(k,0))A^kB+C(k,2)A^(k-2)B³+...+ (C(k,k)+C(k,k-1))AB^k + C(k,k)B^(k+1)
=C(k+1,0)A^(k+1)+C(k+1,1)A^kB+...+C(k+1,k)AB^k + C(k+1,k+1)B^(k+1)
也成立.
故成立.交换性用在相乘的时候有 A^iB^j · A = A^(i+1)B^j
看了 矩阵A,B,且AB=BA,怎...的网友还看了以下:
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=-1,证明:设函 2020-03-30 …
利用等比数列的前n项和的公式证明:如果a不等于b,且a,b都不为0,则a^n+a^(n-1)b+a 2020-05-13 …
矩阵A,B,且AB=BA,怎么证明(A+B)^n=C(n,0)A^n+C(n,1)A^(n-1)B 2020-05-17 …
矩阵(E+A)^n等于什么?看到一个二阶的矩阵n次方=E^n+n(E)^(n-1)A,三阶的n次方 2020-06-12 …
立方差公式的推广证明过程(1)a^n-b^n=(a-b)[a^(n-1)+a^(n-2)*b+.. 2020-07-11 …
用a^n-b^n=(a-b)(a^(n-1)+a^(n-2)*b+...+ab^(n-2)+b^( 2020-07-14 …
求助:矩阵和的n次方解法比如(3E+B)^n=(3E)^n+n*(3E)^(n-1)*B(E+B) 2020-07-29 …
求助:矩阵和的n次方解法比如(3E+B)^n=(3E)^n+n*(3E)^(n-1)*B(E+B) 2020-07-29 …
关于乘方的问题计算1.a·a的m+1-a²·a的m次方(a·a^m+1-a^2·a^m)2.3b的 2020-07-30 …
分解因式谁能给我讲解下!a^n+b^n=(a+b)([a^{n-1}]-[a^{n-2}]*b+[a 2020-11-20 …