早教吧作业答案频道 -->数学-->
一道数列题目1.定义:在数列{an}中,若{an}^2-{an-1}^2=p,(n≥2,n∈N*,p为常数),则称{an}为“等方差数列”.下列是对“等方差数列”的有关判断:①若{an}是“等方差数列”,则数列{an2}是等
题目详情
一道数列题目
1.定义:在数列{an}中,若{an}^2-{an-1}^2=p,(n≥2,n∈N*,p为常数),则称{an}为“等方差数列”.下列是对“等方差数列”的有关判断:①若{an}是“等方差数列”,则数列{an2}是等差数列; ②{(-1)^n}是“等方差数列”; ③若{an}是“等方差数列”,则数列{akn}(k∈N*,k为常数)也是“等方差数列”; ④若{an}既是“等方差数列”,又是等差数列,则该数列是常数数列.其中判断正确的序号是 .
说明:{akn} kn为下标 {an-1} n-1为下标
谁能帮我证明下第③个
1.定义:在数列{an}中,若{an}^2-{an-1}^2=p,(n≥2,n∈N*,p为常数),则称{an}为“等方差数列”.下列是对“等方差数列”的有关判断:①若{an}是“等方差数列”,则数列{an2}是等差数列; ②{(-1)^n}是“等方差数列”; ③若{an}是“等方差数列”,则数列{akn}(k∈N*,k为常数)也是“等方差数列”; ④若{an}既是“等方差数列”,又是等差数列,则该数列是常数数列.其中判断正确的序号是 .
说明:{akn} kn为下标 {an-1} n-1为下标
谁能帮我证明下第③个
▼优质解答
答案和解析
数列{an}中的项列举出来是:a1,a2,.ak,ak+1,ak+2,.a2k.a3k.
数列{akn}中的项列举出来是:ak,a2k a3k.
因为 ak+1^2-ak^2=ak+2^2-ak+1^2=ak+3^2-ak+2^2=.=a2k^2-a2k-1^2=p
所以 (ak+1^2-ak^2)+( ak+2^2-ak+1^2)+( ak+3^2-ak+2^2)+...+( a2k^2-a2k-1^2)=a2k^2-ak^2=kp
类似地有
(akn^2-akn-1^2)=(akn-1^2-akn-2^2)=.=(akn+3^2-akn+2^2)=akn+2^2-akn+1^2=akn+1^2-akn^2=p
同上连加可得
akn+1^2-akn^2=kp
所以,数列{akn}是等方差数列
数列{akn}中的项列举出来是:ak,a2k a3k.
因为 ak+1^2-ak^2=ak+2^2-ak+1^2=ak+3^2-ak+2^2=.=a2k^2-a2k-1^2=p
所以 (ak+1^2-ak^2)+( ak+2^2-ak+1^2)+( ak+3^2-ak+2^2)+...+( a2k^2-a2k-1^2)=a2k^2-ak^2=kp
类似地有
(akn^2-akn-1^2)=(akn-1^2-akn-2^2)=.=(akn+3^2-akn+2^2)=akn+2^2-akn+1^2=akn+1^2-akn^2=p
同上连加可得
akn+1^2-akn^2=kp
所以,数列{akn}是等方差数列
看了 一道数列题目1.定义:在数列...的网友还看了以下:
1、已知k为常数,6x²-xy-2y²+ky-6能分解为两个一次因式的乘积,则k=?1、已知k为常数 2020-03-30 …
若集合M={-1,0,1} ,N={-2,-1,0,1,2},从M到N的映射满足:对每个x∈M,恒 2020-05-15 …
抛物线y=2x²-bx+8的顶点在x轴上,则b的值一定为( ) A抛物线y=2x²-bx+8的顶点 2020-05-16 …
以点(-2,4)为圆心的圆,若有一条直径的两端分别在两坐标轴上,则该圆的方程是()A.(x+2)^ 2020-07-26 …
第一步推论看不懂设S={(x,y)|x2-y2=奇数,x,y∈R},T={(x,y)|sin(2π 2020-07-30 …
设向量=(1,-3),=(-2,4),=(-1,-2),若表示向量4,4-2,2(-),的有向线段 2020-08-02 …
1.若多项式X4+MX3+NX-16能被(X-1)(X-2)整除,则M×N=?2.已知X4+4X2+ 2020-10-31 …
第二步不理解,泰勒公式的余项与多项式的运算法则是什么㏑(1-2x+3x^2)=-2x+3x^2-0. 2020-11-07 …
江湖救急,(-1)2n+(-1)2n+1=(n为正整数).如果一个数的平方等于这个数的绝对值,则这个 2020-12-19 …
7.根据有机化学命名原则,判断下列命名是否有错误,若有错误请根据所要反映的化合物的结构给予重新命名. 2021-01-04 …