早教吧作业答案频道 -->数学-->
设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2)) 答案说是E((X^2+Y^2)^(1/2))=∫∫(x^2+y^2)^(1/2)dF(x,y)=∫∫(x^2+y^2)^(1/2)f(x,y)dxdy (积分都是从-∞到+∞)其中f(x,y)是x,y的联合密度函数(一个二元正态
题目详情
设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2))
答案说是E((X^2+Y^2)^(1/2))=∫∫(x^2+y^2)^(1/2)dF(x,y)=∫∫(x^2+y^2)^(1/2)f(x,y)dxdy (积分都是从-∞到+∞)
其中f(x,y)是x,y的联合密度函数(一个二元正态分布)
计算这个二重积分(转化成一元积分)
结果应该是(π/2)^(1/2) ,
二重积分怎么积分?求具体过程.
答案说是E((X^2+Y^2)^(1/2))=∫∫(x^2+y^2)^(1/2)dF(x,y)=∫∫(x^2+y^2)^(1/2)f(x,y)dxdy (积分都是从-∞到+∞)
其中f(x,y)是x,y的联合密度函数(一个二元正态分布)
计算这个二重积分(转化成一元积分)
结果应该是(π/2)^(1/2) ,
二重积分怎么积分?求具体过程.
▼优质解答
答案和解析
φ(x) =[1/(根号2π)]e^[-(x^2)/2]
故:f(x,y) =φ(x) *φ(y) =[1/(2π)]e^[-(x^2+y^2)/2].
故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+y^2)^(1/2)]*f(x,y)dxdy (积分区域D:xoy平面)
=∫∫(x^2+y^2)^(1/2){[1/(2π)]e^[-(x^2+y^2)/2].}dxdy
=[1/(2π)]*∫∫(r){e^[-(r^2/2].}rdrdθ ( 化为极坐标系下的二重积分,D表示为:0
故:f(x,y) =φ(x) *φ(y) =[1/(2π)]e^[-(x^2+y^2)/2].
故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+y^2)^(1/2)]*f(x,y)dxdy (积分区域D:xoy平面)
=∫∫(x^2+y^2)^(1/2){[1/(2π)]e^[-(x^2+y^2)/2].}dxdy
=[1/(2π)]*∫∫(r){e^[-(r^2/2].}rdrdθ ( 化为极坐标系下的二重积分,D表示为:0
看了 设X Y 相互独立,且服从N...的网友还看了以下:
一道极限题··急求.在数列{an}中,a2=2,a6=10,且数列{√an-1}为等差数列(那1不 2020-04-27 …
matlab中怎么求解多元非线性方程组,请高手给一个例子,和全部的求解命令,比如:u2=x^2*y 2020-05-16 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
小军一下吃掉了3个苹果,剩下的每横行.每竖行中都有2个,请你猜一猜小军吃掉的是哪急用有9个苹果小军 2020-06-03 …
火眼金睛.(下面每组中都有一个错误的,你能把它找出来吗)(1)A.4×9=36B.6×8=48C. 2020-06-10 …
1.在2只杯子中分别注入等量的自来水(约1/4体积),在其中一只杯子中家人2勺食盐和一些碎冰块,另 2020-07-08 …
已知(a,b)=12,[a,b]=180:(1)a=60,b=36;(2)a=12,b=180正确 2020-07-16 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
一幅中国象棋由红黑两色棋子组成,每种颜色的棋子各16枚,每种颜色的棋子中都有2个“炮”,从中随机摸出 2020-11-10 …
已知三角形ABC中,b=2√2,c=1,且tanA/tanB=√2c-b/b,求A和a的值.详细提问 2021-01-23 …