早教吧作业答案频道 -->数学-->
数学:如果m,n满足等式x^2+mx-15=(x+3)(x+n)求m+n的值1.如果m,n满足等式x^2+mx-15=(x+3)(x+n)求m+n的值2.已知x^2+y^2-4x+6y+13=0,x、y为实数,则x^y为何值?3.已知关于x的方程x^2+(m+2)x+2m-1=0 (1)求证:不论实
题目详情
数学:如果m,n满足等式x^2+mx-15=(x+3)(x+n)求m+n的值
1.如果m,n满足等式x^2+mx-15=(x+3)(x+n)求m+n的值
2.已知x^2+y^2-4x+6y+13=0,x、y为实数,则x^y为何值?
3.已知关于x的方程x^2+(m+2)x+2m-1=0
(1)求证:不论实数m取何值时,方程都有两个不等式的实数根;
(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.
1.如果m,n满足等式x^2+mx-15=(x+3)(x+n)求m+n的值
2.已知x^2+y^2-4x+6y+13=0,x、y为实数,则x^y为何值?
3.已知关于x的方程x^2+(m+2)x+2m-1=0
(1)求证:不论实数m取何值时,方程都有两个不等式的实数根;
(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.
▼优质解答
答案和解析
先说第一题
将等号两边给展开,变成x^2+mx-15=x^2+(n+3)x+3n
然后,行比较
得出,m=n+3 3n=-15
求出 m和n
得到m=-2 n=-5
结果就是 m+n=-7
当然这里你也可以理解成将等号两边的式子,进行同类项合并
得到(m-n-3)x+(-15-3n)=0
因为这是个恒成立问题,所以不管x取什么值都成立
所以
m-n-3=0且 -15-3n=0
然后求出来就得了
第二题呢
就先讲式子先合并,变成(x+2)^2 + (y-3)^2=0
这种题目大多数都是这样的,它会变成两个完全平方式子相加,
因为完全平方数,是大于或者等于零的
所以,只有当x+2=0且y-3=0的时候,式子才成立
所以x=-2,y=3
所以x^y=1/9
第三题呢
第一问,用求出它的判别式,化简后△=(m-2)^2+4
这是式子恒大于零的,
所以 第一问就证好了
第二问,因为是相反数,所以它的两个根之和是0
有韦达定理得 -(m+2)=0
所以m=-2
然后带进原来的式子 就可以得到 x^2 - 3=0
就可以求出它的解是 根号3 或者是 负的根号3
思路就是这样
将等号两边给展开,变成x^2+mx-15=x^2+(n+3)x+3n
然后,行比较
得出,m=n+3 3n=-15
求出 m和n
得到m=-2 n=-5
结果就是 m+n=-7
当然这里你也可以理解成将等号两边的式子,进行同类项合并
得到(m-n-3)x+(-15-3n)=0
因为这是个恒成立问题,所以不管x取什么值都成立
所以
m-n-3=0且 -15-3n=0
然后求出来就得了
第二题呢
就先讲式子先合并,变成(x+2)^2 + (y-3)^2=0
这种题目大多数都是这样的,它会变成两个完全平方式子相加,
因为完全平方数,是大于或者等于零的
所以,只有当x+2=0且y-3=0的时候,式子才成立
所以x=-2,y=3
所以x^y=1/9
第三题呢
第一问,用求出它的判别式,化简后△=(m-2)^2+4
这是式子恒大于零的,
所以 第一问就证好了
第二问,因为是相反数,所以它的两个根之和是0
有韦达定理得 -(m+2)=0
所以m=-2
然后带进原来的式子 就可以得到 x^2 - 3=0
就可以求出它的解是 根号3 或者是 负的根号3
思路就是这样
看了 数学:如果m,n满足等式x^...的网友还看了以下:
无论a取何实数,下列式子总能因式分解的是什么无论a取何实数,下列式子总能因式分解的是(A.ax^2 2020-05-13 …
代数式的应用题:1.一种蓝喉蜂鸟的心跳频率是鸟类中最快的,每分心跳的次数大约是1260次,写出这种 2020-06-26 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
立体几何2问题1.若直线L1L2是异面直线则L1L2都相交的两直线也是异面直线为什么错?2.在求异 2020-07-31 …
1.数列{an}中,a1=1,a2=2,a3=3,a4=5,如何推出数列的递推公式为a(n+2)= 2020-08-01 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
m取任何实数时,不等式x^2-(m^2+2m-5)x+(m-3)(m^2+m-2)小于0的解包含0到 2020-11-07 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …