早教吧作业答案频道 -->数学-->
已知m、n均为正整数,且mn│m∧2+n∧2+m.证明m是一个完全平方数
题目详情
已知m、n均为正整数,且mn│m∧2+n∧2+m.证明m是一个完全平方数
▼优质解答
答案和解析
mn│m(m+1)+n^2------式一
依题意有:
m|n^2
n|m(m+1)
显然m与m+1互质,所以
n|m或者n|m+1只有一个成立
一、如果n|m+1则设有整数k, 使m+1=kn,m=kn-1代入式一有
(kn-1)n|(kn-1)kn+n^2
(kn-1)|(kn-1)k+n
(kn-1)|n,所以设n=q(kn-1)=qkn-q,(qk-1)n=q,
如n=1则q=1,k=2,m=1 ,是完全平方数
如n=2则q=2,k=1,m=1,是完全平方数
如n=3以上则q=n,k无解
二如果n|m,则设m=kn代入式一
(kn)n|kn(kn+1)+n^2
kn|k(kn+1)+n
kn|k+n
k|n且n|k
所以k=n
所以m=n^2
依题意有:
m|n^2
n|m(m+1)
显然m与m+1互质,所以
n|m或者n|m+1只有一个成立
一、如果n|m+1则设有整数k, 使m+1=kn,m=kn-1代入式一有
(kn-1)n|(kn-1)kn+n^2
(kn-1)|(kn-1)k+n
(kn-1)|n,所以设n=q(kn-1)=qkn-q,(qk-1)n=q,
如n=1则q=1,k=2,m=1 ,是完全平方数
如n=2则q=2,k=1,m=1,是完全平方数
如n=3以上则q=n,k无解
二如果n|m,则设m=kn代入式一
(kn)n|kn(kn+1)+n^2
kn|k(kn+1)+n
kn|k+n
k|n且n|k
所以k=n
所以m=n^2
看了 已知m、n均为正整数,且mn...的网友还看了以下:
定义映射f:A→B,其中A={(m,n)|m,n∈R}接着 B=R,已知对所有的有序正整数对(m, 2020-05-16 …
1:已知命题:“若数列{an}是等差数列,且am=a,am=b(m≠n、m,n∈N+)则a(m+n 2020-05-16 …
创新应用题已知m,n为正整数,且m*m=n*n+11,则mn的值是多少?m^2=n^2+11m^2 2020-07-17 …
a-b<0的条件是()A.a、b两数的符号相反Ba、b都是正数Ca、b两数都是负数Da比b小已知m 2020-07-30 …
已知两条不重合的直线m,n两个不重合的平面a,b给出下列命题①若m⊥a,n⊥b且m⊥n则a⊥b②若m 2020-11-02 …
已知f(n)=1+12+13+…+1n,n∈n*,求证:(1)当m<n(m∈N*)时,f(n)−f( 2020-12-03 …
定义映射f:A→B,其中A={(m,n)|m,n∈R},B=R,已知对所有的有序正整数对(m,n)满 2020-12-05 …
已知m、n均为非零有理数,下列结论正确的是()A.若m≠n,则|m|≠|n|B.若|m|=|n|,则 2020-12-07 …
已知Sn是数列an的前n项和,且Sn=n的平方-4n+4an我已经求出是an=1,n=12n-5,n 2020-12-22 …
设集合M={x|f(x)=x},集合{x|f(f(x))=x},若已知函数y=f(x)是R上的增函数 2021-01-13 …