早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知BC是O的直径,BF是弦,AD过圆心O,AD⊥BF,AE⊥BC于E,连接FC.(1)如图1,若OE=2,求CF;(2)如图2,连接DE,并延长交FC的延长线于G,连接AG,请你判断直线AG与O的位置关系,并说明理

题目详情
已知BC是 O的直径,BF是弦,AD过圆心O,AD⊥BF,AE⊥BC于E,连接FC.
(1)如图1,若OE=2,求CF;
(2)如图2,连接DE,并延长交FC的延长线于G,连接AG,请你判断直线AG与 O的位置关系,并说明理由.作业帮
▼优质解答
答案和解析
(1)∵BC是 O的直径,AD过圆心O,AD⊥BF,AE⊥BC于E,
∴∠AEO=∠BDO=90°,OA=OB,
在△AEO和△BDO中,
∠AEO=∠BDO
∠AOE=∠BOD
OA=OB

∴△AEO≌△BDO(AAS),
∴OE=OD=2,
∵BC是 O的直径,
∴∠CFB=90°,即CF⊥BF,
∴OD∥CF,
∵O为BC的中点,
∴OD为△BFC的中位线,
∴CF=2OD=4;作业帮
(2)直线AG与 O相切,理由如下:
连接AB,如图所示:
∵OA=OB,OE=OD,
∴△OAB与△ODE为等腰三角形,
∵∠AOB=∠DOE,
∴∠ADG=∠OED=∠BAD=∠ABO,
∵∠GDF+∠ADG=90°=∠BAD+∠ABD,
∴∠GDF=∠ABD,
∵OD为△BFC的中位线,
∴BD=DF,
在△ABD和△GDF中,
∠ABD=∠GDF
BD=DF
∠ADB=∠GFD=90°

∴△ABD≌△GDF(ASA),
∴AD=GF,
∵AD⊥BF,GF⊥BF,
∴AD∥GF,
∴四边形ADFG为矩形,
∴AG⊥OA,
∴直线AG与 O相切.
看了 已知BC是O的直径,BF是弦...的网友还看了以下: