早教吧作业答案频道 -->数学-->
若抛物线y=ax²+bx+c与x轴交于AB两点,与y轴交于点C,我们称△ABC为抛物线的奠基三角形 (1)如图,若抛物线y=(x-3)(x-8)(a>0)的奠基三角形△ABC是等腰三角形,求a的值(2)若D是(1)抛物线上对称
题目详情
若抛物线y=ax²+bx+c与x轴交于AB两点,与y轴交于点C,我们称△ABC为抛物线的奠基三角形

(1)如图,若抛物线y=(x-3)(x-8)(a>0)的奠基三角形△ABC是等腰三角形,求a的值(2)若D是(1)抛物线上对称轴上一点,则在(1)抛物线上是否存在一点P,使以A,B,P,C为顶点的四边形是平行四边形?若存在,求出点P的坐标,若不存在,说明理由.

(1)如图,若抛物线y=(x-3)(x-8)(a>0)的奠基三角形△ABC是等腰三角形,求a的值(2)若D是(1)抛物线上对称轴上一点,则在(1)抛物线上是否存在一点P,使以A,B,P,C为顶点的四边形是平行四边形?若存在,求出点P的坐标,若不存在,说明理由.
▼优质解答
答案和解析
⑴∵A(3,0)、B(8,0)都在X轴正方向上,
∴∠CAB为钝角,∴AC=AB=5,
∴OC=√(AC^2-OA^2)=4,∴C(0,4),
∴4=a*(-3)*(-8),a=1/6.
抛物线解析式为:Y=1/6(X-3)(X-8)=1/6X^2-11/6X+4.
⑵Y=1/6(X^2-11X+24)=1/6(X-11/2)^2-25/24,
∴对称轴X=11/2,顶点(11/2,25/24),
①显然顶点满足条件,即P1(11/2,25/24),
②当PD=AB=5,设P(m,1/6(m^2-11m+24)),
则PD=|m-11/2|=5,
m=1/2或21/2,
∴P2(1/2,25/8),P3(21/2,25/8).
∴∠CAB为钝角,∴AC=AB=5,
∴OC=√(AC^2-OA^2)=4,∴C(0,4),
∴4=a*(-3)*(-8),a=1/6.
抛物线解析式为:Y=1/6(X-3)(X-8)=1/6X^2-11/6X+4.
⑵Y=1/6(X^2-11X+24)=1/6(X-11/2)^2-25/24,
∴对称轴X=11/2,顶点(11/2,25/24),
①显然顶点满足条件,即P1(11/2,25/24),
②当PD=AB=5,设P(m,1/6(m^2-11m+24)),
则PD=|m-11/2|=5,
m=1/2或21/2,
∴P2(1/2,25/8),P3(21/2,25/8).
看了 若抛物线y=ax²+bx+c...的网友还看了以下:
已知非零有理数a,b,c满足a+b+c=0,求a/b+c+b/a+c+c/b+a的值? 2020-04-06 …
现规定一种运算:a现规定一种运算a※b=a的平方b,其中a,b为实数,则2a的平方b+(b-a)※ 2020-05-13 …
已知a(a-1)+(b-a的二次方)=负7,求(2分之a的平方+b的平方)-ab的值a(a-1)+ 2020-05-15 …
已知集合A,B,则A⊆B是A∩B=A 的什么条件?已知集合A,则A⊆B是A∩B=A 的什么条件? 2020-05-15 …
运用公式计算 (a+b)(a-b)(a2-b2)运用公式计算---过程!1.(a+b)(a-b)( 2020-05-16 …
有理数a、b在数周上位置如图所示,(1)求(1)-|a| (2) |b-a| (3)|a-b|-| 2020-05-16 …
对有理数a,b定义运算★:a ★b=a的b次方.例如(-5)★3=(-5)的3次方=-125.对有 2020-05-16 …
1.若a=(1,2),b=(-3,2),当K为何值时,(Ka+b)大于等于(a-3b)其中a和b都 2020-05-16 …
已知,1/a+1/b=7/a+b,求a/b+b/a的值?明天要交!已知,1/a+1/b=7/a+b 2020-05-21 …
关于拉格朗日中值定理两个前提条件:f(x)在[a,b]上连续,在(a,b)上可导.若[a,b]换成 2020-06-22 …