早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知方程ax2+bx+c=0的两个根分别是-3/2,2/1,且抛物线y=ax2+bx+c与过点P(1,2/3)的直线有一个交点Q(-1,-3),求直线与抛物线的解析式

题目详情
已知方程ax2+bx+c=0的两个根分别是-3/2,2/1,且抛物线y=ax2+bx+c与过点P(1,2/3)的直线有一个交点Q(-1,-3),求直线与抛物线的解析式
▼优质解答
答案和解析
已知方程ax2+bx+c=0的两个根分别是-3/2,2/1,则抛物线与X轴的交点是(-3/2,0)、(2/1,0)
可设抛物线的解析式是y=a[x+(3/2)](x-2/1)
将点Q的坐标(-1,-3)代入,得
-3=a[-1+(3/2)](-1-2/1)
-3=a(-3/1)(-2/3)
-3=(2/1)a
a=-6
所以,抛物线的解析式是:y=-6[x+(3/2)](x-2/1)=-6x²-x+2
设直线的解析式是:y=kx+b,将点P、Q的坐标代入,得
{k+b=2/3
-k+b=-3
解得:
{k=6/13
b=-3/2
所以,直线的解析式是:y=(6/13)x-3/2