早教吧作业答案频道 -->数学-->
如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的序号是思考;当点
题目详情
如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:
①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.
其中正确结论的序号是
思考;当点P在DB延长线上时,请将备用图补充完整,并思考结论是否依旧成立?若成立,直接写出结论,若不成立,请写出相应的结论
5 应该是根号2EC
①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.
其中正确结论的序号是
思考;当点P在DB延长线上时,请将备用图补充完整,并思考结论是否依旧成立?若成立,直接写出结论,若不成立,请写出相应的结论
5 应该是根号2EC
▼优质解答
答案和解析
1、过P作PG⊥AB于点G,
∵点P是正方形ABCD的对角线BD上一点,
∴GP=EP,
在△GPB中,∠GBP=45°,
∴∠GPB=45°,
∴GB=GP,
同理,得
PE=BE,
∵AB=BC=GF,
∴AG=AB-GB,FP=GF-GP=AB-GB,
∴AG=PF,
∴△AGP≌△FPE,
①∴AP=EF;
∠PFE=∠GAP
∴④∠PFE=∠BAP,
②延长AP到EF上于一点H,
∴∠PAG=∠PFH,
∵∠APG=∠FPH,
∴∠PHF=∠PGA=90°,即AP⊥EF;
③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45°,
∴当∠PAD=45度或67.5°或90°时,△APD是等腰三角形,
除此之外,△APD不是等腰三角形,故③错误.
∵GF∥BC,
∴∠DPF=∠DBC,
又∵∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴⑤DP=√2EC.
∴其中正确结论的序号是①②④⑤.
∵点P是正方形ABCD的对角线BD上一点,
∴GP=EP,
在△GPB中,∠GBP=45°,
∴∠GPB=45°,
∴GB=GP,
同理,得
PE=BE,
∵AB=BC=GF,
∴AG=AB-GB,FP=GF-GP=AB-GB,
∴AG=PF,
∴△AGP≌△FPE,
①∴AP=EF;
∠PFE=∠GAP
∴④∠PFE=∠BAP,
②延长AP到EF上于一点H,
∴∠PAG=∠PFH,
∵∠APG=∠FPH,
∴∠PHF=∠PGA=90°,即AP⊥EF;
③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45°,
∴当∠PAD=45度或67.5°或90°时,△APD是等腰三角形,
除此之外,△APD不是等腰三角形,故③错误.
∵GF∥BC,
∴∠DPF=∠DBC,
又∵∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴⑤DP=√2EC.
∴其中正确结论的序号是①②④⑤.
看了 如图,点P是正方形ABCD的...的网友还看了以下:
下列程序段的输出结果是B.int*p,*q,k=1,j=10;p=&j;q=&k;p=q;(*p) 2020-05-14 …
被评估车辆的评估值P与重置成本R与各种陈旧贬值D的关系式为( )。A.P=R-DB.D=P-RC.P 2020-05-31 …
甲乙二人在沙地上行走,他们在沙地上留下的脚印大小不同(受力面积S甲>S乙),深浅相同,他们对沙地的 2020-06-12 …
已知互不相等的正数a,b,c,d,p,q满足a,c,b,d成等差数列,a,p,b,q成等比数列,则 2020-06-12 …
点和圆的位置关系中点P在圆外d>r中点P和d是什么意思 2020-06-15 …
零件工程图上例如标有P.C.DΦ90其中的P.C.D是什麼意思? 2020-06-18 …
不好意思打扰下~可以请问下在这个问题中P和P^-1为什么不用进行幂运算?为什么只有D变成D^11? 2020-06-24 …
设P(A)>0,则下面结论正确的:A、P(B|A)P(A)≥P(A)‐P(B)B、P(B|A)P( 2020-07-18 …
前辈们帮忙解释一下这个冒泡排序的每个语句的意思(标注在每句后面就行,voidmainprbub(p 2020-07-23 …
7,如果事件ABC相互独立,则下列等式中正确的是()A,P(A+B+C)=P(A)+P(B)+P(C 2020-12-01 …