早教吧作业答案频道 -->数学-->
已知,矩形ABCD中,AB=8cm,BC=16cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各
题目详情
已知,矩形ABCD中,AB=8cm,BC=16cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒10cm,点Q的速度为每秒8cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.

(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒10cm,点Q的速度为每秒8cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.

▼优质解答
答案和解析
(1)证明:①∵四边形ABCD是矩形,
∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,
∵EF垂直平分AC,垂足为O,∴OA=OC,
∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,
又∵EF⊥AC,∴四边形AFCE为菱形,
②设菱形的边长AF=CF=xcm,则BF=(8-x)cm,
在Rt△ABF中,AB=4cm,由勾股定理得42+(8-x)2=x2,解得x=5,
∴AF=5cm.
(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;
同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形.
因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,
∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,
∴PC=5t,QA=12-4t,
∴5t=12-4t,解得t=4/3,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=4/3秒.
②由题意得,以A、C、P、Q四点为顶点的四边形是平行四边形时,点P、Q在互相平行的对应边上.分三种情况:
i)当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12;
ii)当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12;
iii)当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12.
综上所述,a与b满足的数量关系式是a+b=12(ab≠0).
∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,
∵EF垂直平分AC,垂足为O,∴OA=OC,
∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,
又∵EF⊥AC,∴四边形AFCE为菱形,
②设菱形的边长AF=CF=xcm,则BF=(8-x)cm,
在Rt△ABF中,AB=4cm,由勾股定理得42+(8-x)2=x2,解得x=5,
∴AF=5cm.
(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;
同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形.
因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,
∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,
∴PC=5t,QA=12-4t,
∴5t=12-4t,解得t=4/3,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=4/3秒.
②由题意得,以A、C、P、Q四点为顶点的四边形是平行四边形时,点P、Q在互相平行的对应边上.分三种情况:
i)当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12;
ii)当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12;
iii)当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12.
综上所述,a与b满足的数量关系式是a+b=12(ab≠0).
看了 已知,矩形ABCD中,AB=...的网友还看了以下:
某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已 2020-05-13 …
如何推导出a^3+b^3=(a+b)(a^2-ab+b^2).如何推导出a^3+b^3=(a+b) 2020-05-17 …
关于高中的乘法公式题目、若l=a+b,m=a-b,n=ab(1)试写出l,m,n的关系式、(2)用 2020-06-08 …
要有做题格式t℃时,A物质的不饱和溶液,蒸发20克水或加入4克溶质均可达饱和,求t℃时A物质的溶解 2020-06-17 …
某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周 2020-07-09 …
a=2x/t^2和a=x/t^2a的定义是a=△v/△t△v=v-v0认为v0=0△v=v△t=t 2020-07-11 …
用a^n-b^n=(a-b)(a^(n-1)+a^(n-2)*b+...+ab^(n-2)+b^( 2020-07-14 …
求大神用matlab语言帮我完成下面的题目10.有一组测量数据满足y=e^(-at),t的变化范围 2020-07-24 …
推导a^2-b^2=(a+b)(a-b)和(a-b)^2=a^2-2ab+b^2和(a+b)^2= 2020-07-30 …
下面式子中,是同类项的A.2a和aB.4b和4aC.100和1/2D.6x(^2)y和6y(^2) 2020-08-01 …